- [行业新闻]KDS晶振,DSK321STD晶振,1XZA032768AD19,32.768K温补晶振2022年11月14日 09:24
KDS晶振,DSK321STD晶振,1XZA032768AD19,32.768K有源晶振
KDS晶振 原厂型号 DSK321STD KDS晶振 原厂代码 1XZA032768AD19 Device Name 产品名称系列 OSC(有源晶振) Nominal Frequency 标称频率 32.768 KHZ Supply Voltage 电源电压
1.8~3.3VV Load Impedance 负载阻抗 (resistance part)(parallel capacitance)
10 kΩ
10 pF
Control Voltage Range 控制电压范围
1.15 V Operating Temperature Range 工作温度范围
-40~+85℃ Storage temperature 储存温度
-40~+85℃ Current Consumption 电流消耗
1.5 mA Output Level 输出电平
0.8 Vp-p Symmetry 对称性
40/60% Harmonics 谐波
-8 dBc
SIZE 尺寸 2.5*2.0*0.9mm 1XZA032768AD19晶振产品尺寸图
关于KDS晶振,DSK321STD晶振,1XZA032768AD19,32.768K有源晶振 产品安装的注意事项
1端子A通孔不在底部(安装侧)。
2土地图案布局/金属掩模孔以下土地图案为参考设计。电气特性应满足安装在这片土地上的要求。在测试用地和安装用地不相连的范围内,可以改变接地方式。
对电特性没有任何影响。面罩厚度建议为0.12毫米。包装条件
胶带包装
(1)压花胶带格式及尺寸
(2)卷筒数量:最多2000个/卷
(3)胶带规格
不缺产品。
(4)卷筒规格见图3
包装
产品用防静电袋包装。
*湿度敏感度等级:IPC/JEDEC标准J-STD-033/1级
无需干燥包装,无需重新储存后烘烤。
包装箱
最多10卷/包装箱。但是,在少于10卷的情况下,它由任何盒子容纳。
盒子里的空间用垫子填满了。KDS 晶振即是日本大真空株式会社(DASHINKU CORP),成立于 1951 年,至今已有 50 多年的历史,是全球领先的三大晶振制造商之一,其制造工厂主要分布在日本本土、中国、泰国、印度尼西亚等十多个制造中心,KDS 大真空集团总公司位于日本兵库县加古川,在泰国,印度尼西亚,台湾,中国天津这些大城市均有生产工厂,其中天津工厂是全球晶振行业最大的单体制造工厂,也是全球最大的 TF 型晶振制造工厂.
首先非常的感谢你长期以来对【日本大真空株式会社】,KDS 晶振品牌的支持与厚爱.在此郑重声明,本集团以下简称(KDS)在中国的代理商除了北京中国电子研究院,广州电子研究所,【维多利亚老品牌值得信赖线路】,香港 KDS办事处,台湾KDS办事处,是正规的代理销售企业,其余地区以及公司,个人所销售的KDS产品均不能保证是原装正品,请你选择正规渠道定制货品.
- 阅读(134)
- [行业新闻]1XXB24000MEA|DSB221SDN晶振|24M温补晶振2022年08月22日 10:39
1XXB24000MEA|DSB221SDN晶振|24M温补晶振
KDS晶振 原厂型号 DSB221SDN KDS晶振 原厂代码 1XXB24000MEA Device Name 产品名称系列 TCXO(温补晶振) Nominal Frequency 标称频率 24 MHZ Supply Voltage 电源电压
1.8~3.3V Load Impedance 负载阻抗 (resistance part)(parallel capacitance)
10 kΩ
10 pF
Control Voltage Range 控制电压范围
1.15 V Operating Temperature Range 工作温度范围
-40~+85℃ Storage temperature 储存温度
-40~+85℃ Current Consumption 电流消耗
1.5 mA Output Level 输出电平
0.8 Vp-p Symmetry 对称性
40/60% Harmonics 谐波
-8 dBc
SIZE 尺寸 2.5*2.0*0.9mm 1XXB24000MEA晶振产品尺寸图
1XXB24000MEA晶振产品电气表
关于1XXB24000MEA|DSB221SDN晶振|24M温补晶振 产品安装的注意事项
1端子A通孔不在底部(安装侧)。
2土地图案布局/金属掩模孔以下土地图案为参考设计。电气特性应满足安装在这片土地上的要求。在测试用地和安装用地不相连的范围内,可以改变接地方式。
对电特性没有任何影响。面罩厚度建议为0.12毫米。- 阅读(104)
- [晶振编码查询]1XXB38400MCB|KDS晶振|DSB221SDN晶振|温补晶振|削峰正弦波2022年08月22日 09:36
1XXB38400MCB|KDS晶振|DSB221SDN晶振|温补晶振
KDS晶振 原厂型号 DSB221SDN KDS晶振 原厂代码 1XXB38400MCB Device Name 产品名称系列 TCXO(温补晶振) Nominal Frequency 标称频率 38.4 MHZ Supply Voltage 电源电压
1.8~3.3VV Load Impedance 负载阻抗 (resistance part)(parallel capacitance)
10 kΩ
10 pF
Control Voltage Range 控制电压范围
1.15 V Operating Temperature Range 工作温度范围
-40~+85℃ Storage temperature 储存温度
-40~+85℃ Current Consumption 电流消耗
1.5 mA Output Level 输出电平
0.8 Vp-p Symmetry 对称性
40/60% Harmonics 谐波
-8 dBc
SIZE 尺寸 2.5*2.0*0.9mm 1XXB38400MCB晶振产品尺寸图
1XXB38400MCB晶振产品电气表
关于1XXB38400MCB|KDS晶振|DSB221SDN晶振|温补晶振 产品安装的注意事项
1端子A通孔不在底部(安装侧)。
2土地图案布局/金属掩模孔以下土地图案为参考设计。电气特性应满足安装在这片土地上的要求。在测试用地和安装用地不相连的范围内,可以改变接地方式。
对电特性没有任何影响。面罩厚度建议为0.12毫米。- 阅读(91)
- [行业新闻]TXC晶振9HT11-32.768KDZF-T超小型32.768kHz晶振深受市场的喜爱2022年08月19日 08:42
TXC晶振公司是一家领先的专业频率控制产品制造商致力于研究,设计,制造和销售。其生产的SMD kHz晶体,9HT11系列,编码9HT11-32.768KDZF-T,频率32.768k晶振,小体积晶振尺寸2.0x1.2x0.6mm陶瓷表面贴装封装,两脚贴片无源晶振,石英晶体谐振器,具有超小型,轻薄型,耐热性,耐环境特点,符合RoHS标准/无铅,应用于智能手机,笔记本电脑,钟表电子,汽车电子,医疗设备和数码相机等
TXC晶振9HT11-32.768KDZF-T超小型32.768kHz晶振深受市场的喜爱
- 阅读(689)
- [行业新闻]ABS05音叉晶体1610mm器件针对节能MCU进行了优化,ABS05-32.768KHZ-9-T2022年08月16日 08:45
- ABS05系列是在需要小尺寸的 RTC电路中进行时间管理的完美解决方案。我们高要求的音叉晶体系列功耗低,可在广泛的应用中保持电池寿命。与之前的ABS07相比,ABS05可节省33%的空间。ABS05器件在4.0pF的有效振荡器环路负载中具有±20ppm和±25ppm的设置容差.
特征:
频率:32.768k晶体
小型音叉晶体(1.60x1.0x0.50mm封装)
薄型 - 高度限制设计的理想选择
提供标准的±20ppm设置容差
适用于工业应用的扩展温度-40℃至+85℃
应用:
无线模块
物联网 (IoT)
蓝牙/低功耗蓝牙 (BLE)
商业和工业应用
低功耗 MCU、SoC、收发器
通讯与测量设备
ABS05音叉晶体1610mm器件针对节能MCU进行了优化,ABS05-32.768KHZ-9-T,石英晶体 - 阅读(677)
- [行业新闻]石英晶体负载电容还有频率吗?2019年11月07日 14:54
石英晶体负载电容还有频率吗?这句话听起来又矛盾又好奇,为什么负载电容里面还会有频率出现.我们所知道的不都是石英晶振产品内部有标准频率参数,负载电容值,频率偏差以及工作温度等相关参数,但又是为什么石英晶体负载电容还会有频率呢?那么以下,请跟随着我们来去了解探讨一下有关于<石英晶体负载电容还有频率吗?>的疑问!
当订购用于工作在频率f下的振荡器的晶体时,例如32.768 kHz或20 MHz,通常仅指定工作频率是不够的。尽管晶体将以接近其串联谐振频率的频率振荡,但实际的振荡频率通常与该频率稍有不同(在“并联谐振电路”中会稍高一些)1。
因此,假设您有一个晶体振荡器电路,并且想要购买晶体,以使放置在该电路中时的振荡频率为f。您需要告诉晶振厂家完成什么?您是否需要发送振荡器设计的示意图以及其设计的所有相关细节,例如选择与布局相关的电容器,电阻器,有源元件和杂散?幸运的是,答案是否定的。除了频率f之外,仅需一个数字,即负载电容CL。
2.什么是CL?
假设您的晶体振荡器以所需的频率f运行。在该频率下,晶体具有复阻抗Z,并且对于工作频率而言,这是晶体唯一重要的特性。因此,为了使振荡器在频率f下工作,您需要在频率f下具有阻抗Z的晶体。因此,最糟糕的是,您只需指定一个复数Z = R + jX。实际上,它甚至比这更简单。
尽管原则上应该在频率f处指定晶体电阻R,但通常R中的晶体间差异以及振荡器对此变化的敏感性足够低,因此无需指定R。这并不是说抗结晶性没有影响;是的。我们将在第4节中进一步讨论。
因此,剩下一个值来指定:f处的晶体电抗X。因此,可以指定一种在20 MHz时电抗为400的晶体。取而代之的是,通常通过指定电容CL并等于
在这里我们设定了ω=2πf。 在物理上,在该频率下,晶振和电容CL的串联组合的阻抗具有零相位(等效地,具有零电抗或纯电阻)。 参见图1。
其中第二步遵循公式(1),电容C的电抗为-1 /(ωC)。
图1-该串联组合在晶振具有负载电容CL的频率下具有零相阻抗
因此,确保适当的振荡频率的任务是提供在指定频率下具有所需电抗的组件(在这种情况下为晶体),这由等式(1)2用电容CL表示。例如,我们不是指定晶体在20 MHz时具有400 frequency的电抗,而是指定在20 MHz处具有20 pF的负载电容的晶体,或更通常地,我们指定在20 pF的负载电容下的晶体频率为20 MHz。
在“并联谐振电路”中,CL为正,通常在5 pF至40 pF之间。在这种情况下,晶体在晶体的串联和并联谐振频率(分别为Fs和Fp)之间的狭窄频带内工作。
注释:1订购晶体进行串联谐振操作时,不要指定CL的值,而应声明频率f指的是串联谐振频率Fs。
2这并不是说频率确定的所有方面都与此唯一数字相关。例如,晶体和振荡器的其他方面决定了是否选择了正确的振荡模式以及系统的频率稳定性(短期和长期)。
虽然真正的“串联谐振电路”没有与之相关的负载电容[或方程式(1)可能是无穷大],但大多数“串联谐振电路”实际上实际上是在串联谐振频率之外工作的,因此确实有一个有限负载电容(可以为正或负)。但是,如果此偏移很小,并且不需要指定负载电容,则可以忽略该偏移,也可以通过在指定频率f中稍有偏移来处理它。
正如我们将在第4节中看到的那样,振荡器和晶体都确定CL。但是,该晶体的作用很弱,因为在零电阻的极限内,该晶体在确定CL时根本不起作用。在这种限制情况下,将CL称为振荡器负载电容是有意义的,因为它完全由振荡器决定。但是,到了在订购晶体的时间上,可以指定在负载电容CL处具有频率f的晶体,即这是晶体频率的条件。因此,将CL称为晶体负载电容是合理的。出于争论的目的,我们简单地避免了这个问题,并使用术语负载电容。
3.在CL上定义FL
现在,对于在给定的负载电容下具有给定频率的晶体,我们用方程式(1)作为定义关系。
定义:当晶体在频率FL处的电抗X由公式(1)给出时,晶体在负载电容CL处具有频率FL,其中ω=2πFL。
回想一下,在给定模式下,晶体的电抗从负值增加,在串联谐振时从零增加到在并联谐振附近的大正值,在此它迅速减小到大负值,然后又增加到零。 (参见参考文献[1]。)通过排除并联谐振周围的区域,我们为每个电抗值提供了一个频率。这样,我们可以关联给定CL值的频率FL。因此,CL的正值对应于串联谐振和并联谐振之间的频率。 CL的大负值对应于低于串联谐振的频率,而较小的负值对应于高于并联谐振的频率。 (请参见下面的公式(3)。)
3.1。 晶体频率方程
那么,振荡频率在多大程度上取决于负载电容CL? 我们可以通过确定晶体频率FL如何取决于晶体负载电容CL来回答这个问题。 可以证明这一点非常近似
其中C 1和C 0分别是晶体的动电容和静电容。 (有关该关系的推导和讨论,请参见参考文献[1]。)为便于说明,我们将公式(3)称为晶体频率公式。
这表明晶体振荡器的工作频率与其负载电容的相关性以及对晶体本身的相关性。 特别地,当将负载电容从CL1更改为CL2时,分数频率变化可以通过以下方式很好地近似:
3.2。 修剪灵敏度
公式(3)给出了工作频率FL对负载电容CL的依赖性。 频率随CL的负变化率称为调整灵敏度TS。 使用公式(3),这大约是
由此可见,在较低的CL值下,晶体对CL的给定变化更敏感。
4.但是什么决定CL?
考虑一个简单的皮尔斯振荡器,它由一个晶体,一个放大器以及栅极和漏极电容器组成,如图2所示。
试图计算皮尔斯振荡器电路的负载电容时,必须考虑至少三个杂散电容。
1.从放大器的输入到地面的附加电容。其来源可能是放大器本身,并且将电容跟踪到地。由于此电容与C G并联,因此我们可以简单地将其吸收到C G的定义中。 (CG是电容器对地的电容加上放大器此侧对地的任何附加电容。)
2.从放大器的输出到地面的附加电容。其来源可能是放大器本身,并且将电容跟踪到地。由于此电容与C D并联,因此我们可以简单地将其吸收到C D的定义中。 (即CD是电容器接地电容,再加上放大器此侧的任何其他接地电容。)
3.杂散电容C s使晶体分流,如图2所示。
如上所述重新定义C G和C D,然后得出[2]振荡的条件之一是
Where
是晶体和电容C s的并联组合的阻抗,而R o是放大器的输出电阻。
可以看出,晶振电阻R是负载电容CL的函数,近似为:(假设CL不太小)
其中R 1是晶体[1]的运动阻力。
然后得出结论(提供的CL – C s不太小)
以及
根据这些结果,式(6)给出了CL的以下方程式
其中R′由等式(9)近似。请注意,CL的方程实际上比起初看起来要复杂一些,因为R'取决于CL。
可以看出,CL随R 1的增加而减小,因此通过公式(3),工作频率随晶体电阻而增加。因此,负载电容确实与晶体本身有关。但是,正如我们前面提到的,晶体电阻的变化以及对这种变化的灵敏度通常足够低,因此可以忽略不计。 (在这种情况下,晶体电阻的标称值用于计算CL。)
但是,有时抗拒效果不容忽视。调谐两个晶体,以使它们在给定的负载电容CL下具有完全相同的频率,如果它们的电阻不同,则它们可以在同一振荡器中以不同的频率振荡。这种微小的差异导致所观察到的系统频率变化增加,高于晶体频率校准误差和板对板组件变化所引起的变化。
注意,在晶体电阻为零的情况下(或与放大器的输出电阻R o相比,至少可忽略不计),公式(11)给出
因此,在这种情况下,负载电容是将晶体分流的杂散电容加上晶体每一侧的两个电容与地之间的串联电容。
5,测量CL
虽然原则上可以从电路设计中计算出CL,但是一种更简单的方法是简单地测量CL。这也更加可靠,因为它不依赖于振荡器电路模型,考虑了与布局相关的杂散(可能难以估计),并且考虑了晶体电阻的影响。这是两种测量CL的方法。
5.1方法1
该方法需要阻抗分析仪,但不需要了解晶体参数,并且与晶体模型无关。
1.获得与将要订购的晶体相似的晶体,即具有相似的频率和电阻。
2.将此晶体放置在振荡器中,并测量操作FL的频率。将晶振放入电路中时,请注意不要损坏它或做任何会引起不适当频率偏移的事情。 (如果焊接到位,请使其冷却至室温。)避免焊接的好方法是简单地使用例如铅笔的橡皮擦末端将晶体压在板的焊盘上,并观察振荡频率。只要注意晶体与电路板完全接触即可。该系统仍然可以以较高的频率振荡,而晶体不会与电路板完全接触。
3.使用阻抗分析仪,以步骤2中确定的频率FL测量晶体的电抗X。
4.使用等式(1)以及在FL处的FL(ω=2πFL)和X的测量值来计算CL。
5.2方法2
此方法取决于四参数晶体模型,并且需要了解这些参数(通过您自己的测量或晶体制造商提供的知识)。
1.获得与将要订购的晶体相似的晶体,即具有相似的频率和电阻。
2.表征该晶体。特别要测量其串联频率F s,运动电容C 1和静态电容C 0。
3.将此晶体放在振荡器中,并测量操作FL的频率(如方法1,步骤2所示)。
4.使用公式(3)和FL,F s,C 1和C 0的测量值计算CL。
建议采用至少3个晶体进行这两种方法。正确完成后,该技术通常得出的CL值约为0.1 pF。通过对多个电路板重复该过程以估计CL的电路板间差异,可以找到对最终结果的进一步信心。
注意,在上面,FL不必精确地是期望的振荡频率f。也就是说,CL的计算值不是振荡频率的强函数,因为通常仅晶体是强烈依赖于频率的。如果由于某种原因,振荡器确实具有很强的频率相关性,那么使用该程序将非常困难。
6.我真的需要为CL指定值吗?
至少有三种情况不需要CL的规范:
1.您打算以晶体的串联谐振频率进行操作。
2.您可以容忍频率中的较大误差(大约0.1%或更高)。
3.电路的负载电容足够接近标准值(请参见晶振数据表),以允许频率差。可以使用公式(4)计算该差异。
如果您的应用不满足上述三个条件之一,则应强烈考虑估算振荡器的负载电容,并在指定晶体时使用该值。
- 阅读(194)
- [行业新闻]载入史记:中国历史以来空前的一场阅兵盛宴2019年09月29日 17:44
北京时间2019年10月1日,是我们伟大的祖国——中国成立70周年纪念日。这个激动人心的时刻就要来到了,令我到现在都无法安心的工作,一心只想着给祖国庆生。中国,是以华夏文明为源泉,中华文化为基础,虽然说在中国会有很多个民族聚集在一起,但都以汉族为主体的多民族国家也称之为“中华民族”,又自称为“炎黄子孙,龙的传人”。
传说中,大约在4500多年前,生活在黄河流域原始部落的部落联盟首领。他提倡种植五谷,驯养牲畜,促使这个部落联盟逐步强大。他曾率领部落打败黄河上游的炎帝部落和南方的蚩尤部落。后来炎帝部落和黄帝部落结成联盟,在黄河流域长期生活、繁衍,构成了以后华夏族的主干成分。黄帝被尊奉为华夏族的祖先。所以中华民族被称为炎黄子孙,就是这么来的。黄帝以后,黄河流域部落联盟的杰出首领,先后有尧、舜、禹。那时候,部落联盟首领由推选产生。尧年老了,召开部落联盟会议,大家推举有才德的舜为继承人。尧死后,舜继承了尧的位置,舜年老了,也采取同样的办法把位置让给治水有功的禹。这种更替首领位置的办法,历史上叫做“禅让”。
身为中国人,我想,大家都有必要知道有关于中国成立的原因吧?以下先来了解一下在新中国成立前是一副什么模样。
从公元前21世纪夏朝建立开始,到公元前476年春秋时期结束,是中国的奴隶社会.禹的儿子启建立的夏,是中国最早的奴隶制国家。公元前16世纪,夏王桀在位时,被商汤率兵灭亡.
公元前16世纪至公元前11世纪的商朝,是奴隶社会的发展时期。商朝的农业、手工业较发达,青铜冶炼和铸造有很高水平。中国有文字可考的历史是从商朝开始的。商纣王统治时,周武王兴兵伐纣,商亡.
公元前11世纪至公元前771年的西周,是奴隶社会的强盛时期。西周统治者实行了分封制和井田制。周厉王统治时,引起“国人暴动”,厉王逃跑,政权由周、召二公执掌。公元前771年,西周被犬戎灭亡。
公元前770年至公元前476年的春秋时期,是奴隶社会逐步瓦解时期。这一时期,周王室衰微,诸侯争霸。由于铁器的使用和牛耕的出现,生产力提高,私田增多,促使以奴隶制国有土地为基础的井田制逐步瓦解,奴隶制走向崩溃。春秋时期,在文化上出现了繁荣局面.
封建社会的确立和初步发展
从公元前475年战国时期开始,到公元220年东汉灭亡,是中国封建社会的确立和初步发展时期。
战国时期,新兴地主阶级推动了各诸侯国的变法运动。其中秦国商鞅变法比较彻底,使秦国逐渐成为诸侯国中实力最强的国家。这一时期,社会经济获得很大发展,科学技术取得显著成就,思想上出现了“百家争鸣”的繁荣局面。
秦朝是中国历史上第一个统一的多民族的专制主义中央集权的封建国家。秦始皇为巩固专制主义中央集权所采取的一系列措施,对后世产生了重大影响。秦统一后,为了防御匈奴南侵,在连接原来秦、赵、燕三国北方长城的基础上,又向东、西两段延伸,筑成一道西起临洮、东到辽东的城防。这就是有名的万里长城。秦统治者的暴政导致了农民战争的爆发和秦王朝的灭亡。
西汉是中国历史上一个强盛的封建国家。汉高祖刘邦采取的“休养生息”政策,使社会经济得到了恢复和发展,汉文帝、汉景帝推崇黄老治术,采取“轻徭薄赋”、“与民休息”的政策出现了“文景之治”的局面,汉初几位统治者的稳定基础,从而使得汉武帝时国力达到了空前强盛。平定“七国之乱”后,加强了中央集权;通过“罢黜百家,独尊儒术”,在全国加强了思想统治;通过对匈奴战争和张骞出使西域,使多民族的国家得到进一步发展;丝绸之路的拓通,使中外经济文化交流有了新的发展。西汉末年,由于社会矛盾尖锐,农民战争爆发,西汉终于走向了灭亡。
东汉初期的光武帝调整了统治政策,使社会出现了“光武中兴”的局面。但东汉后期,豪强地主势力发展,社会黑暗,终于爆发了黄巾大起义。在农民起义的打击下,东汉名存实亡。
秦汉时期,国家统一,生产发展,各民族间政治经济联系加强,科学文化得到迅速发展。
封建国家的分裂和民族大融合
从220年曹丕建魏,到589年隋统一,是中国历史上封建国家的分裂和民族大融合时期。
经过黄巾起义的沉重打击,东汉政权已名存实亡。在镇压起义过程中出现了一些割据一方的军事集团。曹操在官渡打败袁绍,基本上统一北方。赤壁一战,曹操大败,退回北方。孙权、刘备的地位得到巩固。220年,曹丕称帝建魏;221年,刘备称帝建蜀;222年,孙权称王建吴,三国鼎立局面形成。三国时期,各国经济都得到了发展。
三国后期,魏国的力量日益强大。263年,魏灭了蜀。265年,司马炎夺取魏政权建立晋朝,史称西晋。280年,西晋灭吴,结束了三国鼎立的局面。西晋的统一是短期的,由于阶级矛盾和民族矛盾日益尖锐,内迁的少数民族和各地流民不断起义、反抗,终于导致了西晋的灭亡。
灭亡后,皇族司马睿在江南建立政权,史称东晋。北方各族统治者先后建立了许多国家,史称十六国。383年,统一黄河流域的前秦和东晋间的淝水之战,东晋取得了胜利,不久,前秦瓦解,形成了南北对峙的局面。在南方,东晋之后,经历了宋、齐、梁、陈四个朝代,史称南朝;在北方,经历了北魏、东魏和西魏、北齐和北周五个朝代,史称北朝。南北朝时期,江南得到了开发,北方出现了各民族的大融合。北魏孝文帝的改革,促进了民族的融合。
三国、两晋、南北朝时期,由于各民族的大融合和南北经济的发展,科学文化得到了进一步发展,在不少领域取得了世界领先的成就。
封建社会的繁荣
从581年隋朝建立,到907年唐朝灭亡,是中国封建社会的繁荣时期。
在民族大融合和南北经济发展的基础上,隋朝实现了统一。全国统一后,社会秩序安定下来,农业、手工业和商业得到发展,封建经济开始呈现了繁荣局面。官制的改革和科举制的创立,对后世产生了重大影响;大运河的开凿,对南北经济交流起了很大作用。
当隋末农民起义蓬勃发展时,李渊起兵攻占长安,并在618年称帝,建立唐朝。唐初统治者,吸取隋亡教训,调整统治政策,前期政治比较清明,出现了“贞观之治”、“开元盛世”,封建经济得到新的发展。
唐朝是一个强盛的多民族封建国家,各民族间的联系加强,同亚洲各国的经济文化交流也空前频繁。
安史之乱是唐朝由强盛转向衰落的转折点。安史之乱后,唐朝出现了藩镇割据的局面,生产遭到严重破坏。唐朝后期,土地兼并十分严重,导致了农民战争爆发,唐朝迅速瓦解。
隋唐时期,中国南北统一,疆域广阔,经济发达,中外文化交流频繁。在此基础上,各族人民共同创造了辉煌灿烂的文化.
民族融合的进一步加强和封建经济的继续发展
从907年后梁建立,到1368年元朝灭亡,是中国封建社会民族融合的进一步加强和封建经济的继续发展时期。
五代十国时期,南方相对安定,经济获得较大发展。五代十国后期,后周逐渐强大,为后来结束分裂割据局面奠定了基础。
北宋建立后,采取了一系列加强中央集权的措施,结束了五代十国的分裂局面,封建经济得到继续发展。北宋中期,出现了财政困难等危机,为了克服统治危机,王安石实行了变法。北宋末,政治腐朽,防备空虚,金兵南下,结束了北宋的统治。1127年,南宋的统治开始。南宋与金对峙,南北经济都有新的发展。
北宋时,同其并立的主要少数民族政权,有契丹族建立的辽,有取代辽的女真族建立的金,还有党项族建立的夏。各民族政权间不断进行战争,同时也加强了经济文化交流。
蒙古族的首领铁木真统一蒙古各部,建立了蒙古政权。成吉思汗及其子孙发动了大规模的战争。忽必烈建立的元朝,统一了全国。元的统一促进了多民族国家的发展。元朝实行的行省制度,有效地管辖了全国。
宋元时期,各民族经济交往频繁,手工业、商业和城市经济较前繁荣,中国同亚、欧、非各国联系加强,文化科学技术达到了高度繁荣的水平。
统一的多民族国家的巩固和封建制度的逐渐衰落(鸦片战争以前)
从1368年明朝建立,到1840年鸦片战争爆发前止,是中国封建社会统一的多民族国家的巩固和封建制度的逐渐衰落时期。
1368年,朱元璋建立了明朝。明朝前期,明政府采取了一系列措施,强化中央集权。为了加强军事防御力量,明政府营建并迁都北京。为巩固北部边防,明政府修筑了北边的长城。为了进一步加强同海外各国的联系,明政府派遣郑和出使西洋。明朝中后期,随着商品经济的发展,在江南一些地方出现了资本主义生产关系的萌芽。明朝后期,封建专制统治腐朽,社会矛盾日益尖锐,终于爆发了李自成领导的农民起义,明朝的统治被推翻。
1616年,努尔哈赤建立了女真族的政权后金。皇太极改女真为满洲,于1636年称帝,并改金为清。清初统治者为了进一步加强专制主义的中央集权,除设立内阁、六部外,还增设了军机处;为了从思想上控制人民,清政府一再兴起文字狱,压制知识分子的反清思想。
明清前期,统一的多民族国家得到巩固。郑成功收复台湾,清朝设置台湾府,击败沙俄对中国黑龙江流域的侵略,这些斗争维护了国家主权和领土完整。清政府粉碎噶尔丹的分裂活动,平定大小和卓的叛乱,加强对西藏的管辖,使多民族国家得到进一步巩固。
明清时期,出现了几部总结性的科技著作,出现了反专制主义的带有民主色彩的进步思想家。文学方面也出现了几部优秀的长篇小说。
有关于中国的近代史
中国近代史的时间为,从1840年鸦片战争到1949年中华人民共和国成立前,这也是中国半殖民地半封建社会的历史。中国近代史分为前后两个阶段,从1840年鸦片战争到1919年“五四”运动前夕,是旧民主主义革命阶段;从1919年“五四”运动到1949年中华人民共和国成立前夕,是新民主主义革命阶段。
鸦片战争前,中国是一个独立自主的封建国家。由于中国的自然经济占统治地位,在中英正当贸易中,中国处于出超地位。英国为了改变贸易入超的状况,向中国偷运鸦片。鸦片的输入给中华民族带来了深重的灾难。人民群众强烈要求禁烟。林则徐领导的禁烟运动,给英国侵略者以沉重的打击。1840年,英国发动了侵略中国的鸦片战争。战争中,广大爱国官兵和三元里人民进行了英勇战斗。但由于清政府奉行妥协方针,终于导致战争的失败。1842年,英国强迫清政府签订《中英南京条约》,中国的独立和领土完整开始遭到破坏,从封建社会开始沦为半殖民地半封建社会。战争中,一些爱国的知识分子惊醒了,一股“向西方学习”的新思潮萌发了。
1856—1860年的第二次鸦片战争,是英、法为了扩大侵略权益而发动的侵华战争。美、俄坐收渔人之利。四国强迫清政府签订的《天津条约》、《北京条约》等,使中国丧失了更多的领土和主权,外国侵略势力扩大到沿海各省和长江中下游地区。中国社会的半殖民地化程度,进一步加深了。
鸦片战争后,清朝国内阶级矛盾空前激化,农民起义风起云涌。1851年,洪秀全发动了金田起义,并建立了太平天国政权;1853年,太平天国定都天京,颁布了《天朝田亩制度》;1856年,太平天国军事上达到了全盛时期;领导集团内部矛盾激化引发的天京事变大伤了太平天国的元气;1864年,太平天国运动失败。洪秀全领导的太平天国运动,体现了新时代农民战争的特点。太平天国的一些领导人,开始向西方寻求真理,探索中国独立、富强的途径,勇敢地担负起反封建、反侵略的任务。太平天国运动是中国农民战争的高峰。
清朝后期资本主义的产生和民族危机的加深
19世纪60年代,清朝统治阶级内部出现了洋务派。从60年代到90年代。他们掀起了一场“师夷长技以自强”的洋务运动。洋务运动没使中国走上富强的道路,但在客观上刺激了中国资本主义的发展。
19世纪60、70年代,中国社会出现了资本主义的生产方式,中国民族资产阶级产生了。中国民族资产阶级对外国资本主义侵略和本国封建主义压迫,既有革命性一面,又有妥协性的一面。中国无产阶级产生于40年代,早于民族资产阶级,是中国新生产力的代表者,具有最坚决、最彻底的革命性。
19世纪后半期,随着世界资本主义向帝国主义过渡,帝国主义更加紧了对中国的侵略。1883年和1894年,先后爆发了中法战争和甲午中日战争。《中法新约》的签订,使法国进一步打开了中国西南的门户;中日《马关条约》的签订,大大加深了中国社会的半殖民地化。
《马关条约》签订后,各帝国主义列强在中国展开了资本输出的激烈竞争,还在中国强占“租借地”,划分“势力范围”,掀起瓜分中国狂潮,中国民族危机空前加深。
戊戌变法和义和团运动
甲午中日战争后,由于民族危机空前严重和中国民族资本主义的初步发展,民族资产阶级开始作为新的政治力量登上历史舞台。以康有为、梁启超为首的资产阶级维新派,为了挽救民族危亡和发展资本主义,掀起维新变法运动。以慈禧太后为代表的封建顽固守旧势力发动政变,使维新变法归于失败。这场资产阶级性质的改良运动,在社会上起到了思想启蒙的作用,有利于资产阶级思想文化的传播。
义和团运动是一场反帝爱国运动。这一运动粉碎了帝国主义列强瓜分中国的狂妄计划,沉重打击了清政府的反动统治,加速了它的灭亡。1900年夏,英、俄、日、法、德、美、意、奥八国联军侵略中国。1901年,清政府被迫同八国及比利时、荷兰、西班牙等11国签订了《辛丑条约》。标志着中国半殖民地半封建社会的形成。
辛亥革命和清朝的灭亡
1894年,孙中山创立了中国资产阶级第一个革命团体兴中会。19世纪末,辛亥革命元老中国现代教育奠基人何子渊等人开风气之先,创导新学。1905年,清廷颁布废除科举制。20世纪初,资产阶级民主革命思想得到广泛传播,出现了章炳麟、邹容、陈天华等著名民主革命思想家和宣传家。随着民主革命思想的广泛传播,资产阶级革命团体也相继建立起来。1905年中国同盟会的成立,标志着中国的资产阶级民主革命进入了一个新的阶段。革命派通过与保皇派的论战,使民主革命思想得到进一步传播,有力地推动了民主革命高潮的到来。
同盟会成立后,革命党人发动了萍浏醴、广州黄花岗等一系列起义,四川发生了保路运动。1911年10月武昌起义成功。1912年元旦,孙中山在南京就任临时大总统,宣告中华民国成立,接着颁布了《中华民国临时约法》。辛亥革命既有伟大的历史功绩,也留下了深刻的教训。
辛亥革命是中国近代历史上的一次反帝反封建的资产阶级民主革命。它推翻了清廷的统治和两千多年的君主制度,建立了资产阶级民主共和国,颁布了反映资产阶级民主主义精神的临时约法。辛亥革命,使人民获得了一些自由和民主的权利。在政治上和思想上获得一定的解放。它使民主共和国的观念深入人心。辛亥革命也打击了帝国主义在中国的殖民统治,为中国民族资本主义的发展创造了有利条件。
中华民国初期北洋军阀的统治
1912年3月,袁世凯就任中华民国临时大总统,临时政府迁往北京。临时政府正式迁京后,以袁世凯为首的北洋军阀政权建立起来。袁世凯对内镇压国民党,对外出卖国家主权,孙中山号召武力讨袁,“二次革命”发生了。由于国民党力量涣散,北洋军力量强大,“二次革命”很快失败。袁世凯镇压“二次革命”后,开始了复辟帝制的活动。孙中山再次组织武力讨袁,护国运动爆发,袁世凯被迫取消帝制,在绝望中死去。
袁世凯死后,中国出现了军阀割据的局面。徐州军阀张勋以调停“府院之争”为名,进北京拥戴溥仪复辟,但复辟丑剧只持续了短短的12天。段祺瑞再次执政后,拒绝恢复《临时约法》和召集国会。为维护共和制度,孙中山倡导了护法运动,但不久也失败了。
第一次世界大战期间,帝国主义忙于战争,暂时放松了对中国的经济侵略,中国的民族工业得到了短暂的发展。
五四运动和中国共产党的创立
第一次世界大战期间,随着中国资本主义经济的进一步发展,资产阶级强烈要求在中国实行资产阶级的民主政治,反对封建军阀的统治,新文化运动应运而生了。1915年,陈独秀在上海创办《新青年》,成为新文化运动兴起的标志。“民主”和“科学”是新文化运动提出的口号。新文化运动在社会上掀起了一股思想解放的潮流。俄国十月社会主义革命胜利后,李大钊宣传十月革命,在中国第一次举起了社会主义的大旗,从而使新文化运动有了新的发展。
巴黎和会拒绝了中国代表的正义要求,激起中国人民强烈义愤。1919年的五四运动在北京爆发。6月初,运动发展成以工人阶级为主力的全国规模的群众爱国运动,并取得了初步胜利。五四运动具有重大的历史意义,是中国新民主主义革命的开端。
五四运动后,马克思主义在中国传播开来,成为新思潮的主流。一批先进分子把马克思主义同中国工人运动初步结合起来。1920年,共产主义小组在各地相继建立,1921年,中共“一大”召开,中国共产党诞生了。1922年,中共“二大”制定了民主革命纲领,为中国革命指明了方向。
在中国共产党的领导下,从1922年1月香港海员罢工到1923年2月京汉铁路工人罢工,中国工人运动出现了第一次高潮。
国民大革命时期
1924年1月至1927年7月是第一次国内革命战争时期。第一次国内革命战争是中国人民在中国共产党领导下进行的反对帝国主义、北洋军阀的战争。
经过二七惨案,中国共产党认识到,仅仅依靠工人阶级的力量是不够的,只有团结一切可以团结的力量,才可能把中国革命引向胜利。为此,中国共产党决定同孙中山领导的国民党合作,建立革命统一战线。1924年1月,中国国民党在广州举行第一次全国代表大会。国民党“一大”的召开标志着国共两党合作的实现和革命统一战线的正式建立。接着,在中国共产党和苏联的帮助下,国民党在广州黄埔建立了陆军军官学校,为建立国民革命军奠定了基础。
国民党一大后,全国反帝反封建的国民大革命运动迅速开展起来。各地工人纷纷罢工,掀起反帝爱国运动的高潮,其中影响最大的是五卅运动和省港大罢工;广东、湖南等省的农民运动逐渐发展起来,广东革命政府还创办了培养农民运动骨干的讲习所;两次东征陈炯明后,广东革命根据地得到了巩固和统一;第一次东征后,国民政府在广州成立,并将所属军队编为国民革命军。
为了打倒帝国主义,推翻军阀统治,统一中国,国民政府开始了北伐。北伐军胜利进军,不到半年打到长江流域。北伐战争得到了工农运动的大力支援;北伐战争的胜利又推动了工农运动的高涨,上海工人武装起义取得了胜利。
1925年3月孙中山逝世后,国民党右派加紧争夺革命领导权。1927年,蒋介石发动了“四·一二”反革命政变;汪精卫发动了“七·一五”反革命政变。这期间,以陈独秀为代表的中共中央犯了右倾投降主义错误。于是国民革命失败了。
国共十年对峙
1927年8月至1937年7月是第二次国内革命战争时期。第二次国内革命战争是中国人民在中国共产党领导下反对国民党反动统治的战争。
“四·一二”反革命政变后,蒋介石在南京建立了国民政府。不久,国民政府举行“北伐”,占领北京,奉系军阀张作霖退到关外。张学良“东北易帜”,服从国民政府。这样,国民政府形式上统一了全国。但国民党新军阀间连年混战给人民带来极大灾难。在国民政府统治下,四大家族凭借国家政权,迅速聚敛巨额财富,成为中国官僚买办资产阶级的代表。
中国共产党人没有被国民党反动派的屠杀吓倒,1927年召开“八七”会议,纠正了陈独秀的右倾投降主义错误,发动了南昌起义、秋收起义和广州起义,创建红军,开辟农村根据地,进行土地革命,开辟了一条农村包围城市,武装夺取政权的道路。接着,又取得红军三次反“围剿”的胜利。与此同时,建立了中华苏维埃政权。
1931年,日本发动了侵略中国东北的“九·一八”事变。由于国民党的不抵抗政策,致使东北三省沦亡。日本扶植溥仪做傀儡皇帝,建立伪满洲国,对东北实行殖民统治。1932年,日本又发动了侵略上海的“一·二八”事变,取得了日军驻留上海的权利。
1933年秋,蒋介石发动了对革命根据地的第五次“围剿”。由于王明“左”倾冒险主义错误的影响,红军第五次反“围剿”失利,被迫长征。中国共产党在长征路上举行的遵义会议,在极其危急关头挽救了党、红军和中国革命。红军在毛泽东的指挥下,克服千难万险,取得了长征的胜利。
1935年《何梅协定》的签订和“华北五省自治”,使中华民族处在亡国灭种的生死关头。“一二·九”运动掀起了全国抗日救亡运动的新高潮。1935年12月在瓦窑堡召开的中共中央政治局扩大会议制定了抗日民族统一战线的策略方针。1936年西安事变获得了和平解决,由此揭开了国共两党由内战到和平,由分裂对峙到合作抗日的序幕。
抗日战争
1937年7月7日,日军进攻卢沟桥,中国军队奋起还击,全国抗日战争的序幕由此揭开。8月13日,日军进攻上海,国民政府被迫对日作战。9月下旬,国民党公布中国共产党提交的国共合作宣言,抗日民族统一战线正式形成,全民族的抗战开始。
抗战初期,国民政府在正面战场组织多次战役,抗击日本侵略者,但实行的是一条片面抗战的路线,丧失了大片国土。中国共产党实行的是全面抗战的路线,执行持久抗战的方针,八路军、新四军深入敌后,广泛开展游击战争,建立了许多抗日根据地,取得了很大胜利。
1938年10月,日军占领广州、武汉后,抗日战争进入相持阶段。日本帝国主义对国民党实行政治诱降,国民党内的亲日派叛国投敌;国民党内的亲英美派抗战逐渐消极,制造反共摩擦事件,对此,中国共产党给予了坚决地回击和无情地揭露。在抗日战争的艰苦岁月里,为了克服困难,争取抗战的胜利,中国共产党在政治上、经济上、思想上采取了一系列措施,终于度过了最困难时期。
1944年,解放区军民开始局部反攻。1945年4月,中国共产党召开了“七大”,8月8日,苏联对日宣战。8月9日,毛泽东发出“对日寇的最后一战”的号召,抗日战争进入大反攻。8月15日,日本政府宣布无条件投降,9月2日签订无条件投降书。经过八年艰苦奋战,中国人民取得抗日战争的伟大胜利。
人民解放战争
抗日战争胜利后,1945年8月,毛泽东亲赴重庆同国民党进行谈判,国共双方代表签订了《双十协定》。但是,国民党在谈判期间派军队向解放区发起进攻。解放区军民打退了国民党的军事进攻。国共双方代表签订了停战协定,并在重庆召开了政治协商会议。
1946年夏,国民党军队在美帝国主义援助下向解放区发动进攻,全面内战爆发。
从1946年夏到1947年6月,人民解放军粉碎了国民党军队的全面进攻和重点进攻。1947年6月底,人民解放军开始了全国性的反攻。从1948年9月到1949年1月,人民解放军先后发动了辽沈、淮海、平津三大战役,基本上消灭了国民党军队的主力,加速了人民解放战争在全国的胜利。1949年4月,人民解放军渡江作战,23日解放南京。
1949年9月,第一届中国人民政治协商会议召开。
看完本篇文章需要一定的耐心,因为这篇文章承接着中国的成立的端倪,落败以及奋然兴起对抗以及正式成立。在1949年的10月1日下午2点。中国人民政治协商会议第一届全体会议选举产生的中央人民政府委员会在勤政殿举行第一次会议。中央人民政府主席毛泽东,副主席朱德、刘少奇、宋庆龄、李济深、张澜、高岗,以及周恩来等56名中央人民政府委员会委员宣布就职。会议一致决议,宣布中华人民共和国中央人民政府成立,接受《中国人民政治协商会议共同纲领》为施政方针,向各国政府宣布中华人民共和国中央人民政府为中国唯一合法政府,愿与遵守平等、互利及互相尊重领土主权原则的任何外国政府建立外交关系。会议结束后,中央人民政府主席、副主席及各位委员集体出发,乘车出中南海东门,前往天安门城楼出席开国大典。下午3时,北京30万群众齐集天安门广场,举行隆重的开国大典。毛泽东主席在天安门城楼上向全世界庄严宣告:“中华人民共和国中央人民政府今天成立了!”向世界宣告中华人民共和国中央人民政府成立。
虽然中国成立的时候我并不在场,但这句“中华人民共和国中央政府今天成立了”时时刻刻的提醒着每一个中国人应要铭记历史,铭记西方列强对我们的做的种种恶行,不要忘记国家曾经所受到的屈辱,发奋图强,使祖国更加繁荣强大。勿忘国耻,振兴中华。“振兴中华”,就必须反对帝国主义对中国的侵略和掠夺,“扶大厦之将倾”,维护国家的独立和主权;“振兴中华”,就必须进行反清革命,推翻清王朝的统治,使中国人民从封建专制主义的压迫下解放出来;“振兴中华”,就必须向西方学习,发展资本主义经济,进行政治革命,“创立合众政府”。
2019年10月1日,新中国成立70周年大阅兵堪称空前盛宴,史上从来没有像今年一样那么大规模,那么大气场.
70年来,中国从一个饱受战争和饥荒蹂躏的国度,变成一个强大的现代化民族国家。不断增强的经济和军事实力,使得它受到国际社会的广泛关注。因此,本次中国国庆“大阅兵”,无疑是各方关注的焦点。
中国成立70周年大阅兵演练
中国成立70周年大阅兵演练
- 阅读(261)
- [晶振编码查询]1XTV19200CDB|DSA321SDA晶振|KDS晶振|株式会社大真空|VCTCXO晶振2019年09月06日 09:21
KDS 晶振即是日本大真空株式会社(DASHINKU CORP),成立于 1951 年,至今已有 50 多年的历史,是全球领先的三大晶振制造商之一,其制造工厂主要分布在日本本土、中国、泰国、印度尼西亚等十多个制造中心,KDS 大真空集团总公司位于日本兵库县加古川,在泰国,印度尼西亚,台湾,中国天津这些大城市均有生产工厂,其中天津工厂是全球晶振行业最大的单体制造工厂,也是全球最大的 TF 型晶振制造工厂.
首先非常的感谢你长期以来对【日本大真空株式会社】,KDS 晶振品牌的支持与厚爱.在此郑重声明,本集团以下简称(KDS)在中国的代理商除了北京中国电子研究院,广州电子研究所,【维多利亚老品牌值得信赖线路】,香港 KDS办事处,台湾KDS办事处,是正规的代理销售企业,其余地区以及公司,个人所销售的KDS产品均不能保证是原装正品,请你选择正规渠道定制货品.
1XTV19200CDB|KDS晶振|株式会社大真空|VC-TCXO振荡器
Model Name 型号 DSA321SDA Original code 原厂代码 1XTV19200CDB Device Name 产品名称系列 VC-TCXO(压控温补振荡器) Nominal Frequency 标称频率 19.2 MHZ Supply Voltage 电源电压
2.8V Load Impedance 负载阻抗 (resistance part)(parallel capacitance)
10 kΩ
10 pF
Control Voltage Range 控制电压范围
1.15 V Operating Temperature Range 工作温度范围
-40~+85℃ Storage temperature 储存温度
-40~+85℃ Current Consumption 电流消耗
1.5 mA Output Level 输出电平
0.8 Vp-p Symmetry 对称性
40/60% Harmonics 谐波
-8 dBc
SIZE 尺寸 3.2*2.5*0.9mm 1XTV19200CDB晶振产品尺寸图
1XTV19200CDB晶振产品电气表
关于1XTV19200CDB压控温补振荡器产品安装的注意事项
1端子A通孔不在底部(安装侧)。
2土地图案布局/金属掩模孔以下土地图案为参考设计。电气特性应满足安装在这片土地上的要求。在测试用地和安装用地不相连的范围内,可以改变接地方式。
对电特性没有任何影响。面罩厚度建议为0.12毫米。包装条件
胶带包装
(1)压花胶带格式及尺寸
(2)卷筒数量:最多2000个/卷
(3)胶带规格
不缺产品。
(4)卷筒规格见图3
包装
产品用防静电袋包装。
*湿度敏感度等级:IPC/JEDEC标准J-STD-033/1级
无需干燥包装,无需重新储存后烘烤。
包装箱
最多10卷/包装箱。但是,在少于10卷的情况下,它由任何盒子容纳。
盒子里的空间用垫子填满了。
- 阅读(128)
- [晶振编码查询]1XTV26000AAD|KDS晶振|株式会社大真空|VCTCXO晶振2019年08月30日 08:39
KDS 晶振即是日本大真空株式会社(DASHINKU CORP),成立于 1951 年,至今已有 50 多年的历史,是全球领先的三大晶振制造商之一,其制造工厂主要分布在日本本土、中国、泰国、印度尼西亚等十多个制造中心,KDS 大真空集团总公司位于日本兵库县加古川,在泰国,印度尼西亚,台湾,中国天津这些大城市均有生产工厂,其中天津工厂是全球晶振行业最大的单体制造工厂,也是全球最大的 TF 型晶振制造工厂.
首先非常的感谢你长期以来对【日本大真空株式会社】,KDS 晶振品牌的支持与厚爱.在此郑重声明,本集团以下简称(KDS)在中国的代理商除了北京中国电子研究院,广州电子研究所,【维多利亚老品牌值得信赖线路】,香港 KDS办事处,台湾KDS办事处,是正规的代理销售企业,其余地区以及公司,个人所销售的KDS产品均不能保证是原装正品,请你选择正规渠道定制货品.
1XTV26000AAD|KDS晶振|株式会社大真空|VC-TCXO振荡器
Model Name 型号 DSA321SCA Original code 原厂代码 1XTV26000AAD Device Name 产品名称系列 VC-TCXO(压控温补振荡器) Nominal Frequency 标称频率 26 MHZ Supply Voltage 电源电压
2.8V Load Impedance 负载阻抗 (resistance part)(parallel capacitance)
10 kΩ
10 pF
Control Voltage Range 控制电压范围
1.15 V Operating Temperature Range 工作温度范围
-40~+85℃ Storage temperature 储存温度
-40~+85℃ Current Consumption 电流消耗
1.5 mA Output Level 输出电平
0.8 Vp-p Symmetry 对称性
40/60% Harmonics 谐波
-8 dBc
SIZE 尺寸 3.2*2.5*0.9mm 1XTV26000AAD晶振产品尺寸图
1XTV26000AAD晶振产品电气表
关于1XTV26000AAD压控温补振荡器产品安装的注意事项
1端子A通孔不在底部(安装侧)。
2土地图案布局/金属掩模孔以下土地图案为参考设计。电气特性应满足安装在这片土地上的要求。在测试用地和安装用地不相连的范围内,可以改变接地方式。
对电特性没有任何影响。面罩厚度建议为0.12毫米。包装条件
胶带包装
(1)压花胶带格式及尺寸
(2)卷筒数量:最多2000个/卷
(3)胶带规格
不缺产品。
(4)卷筒规格见图3
包装
产品用防静电袋包装。
*湿度敏感度等级:IPC/JEDEC标准J-STD-033/1级
无需干燥包装,无需重新储存后烘烤。
包装箱
最多10卷/包装箱。但是,在少于10卷的情况下,它由任何盒子容纳。
盒子里的空间用垫子填满了。
- 阅读(111)
- [晶振编码查询]1XTV26000JBA|KDS晶振|株式会社大真空|VCTCXO晶振2019年08月21日 09:02
KDS 晶振即是日本大真空株式会社(DASHINKU CORP),成立于 1951 年,至今已有 50 多年的历史,是全球领先的三大晶振制造商之一,其制造工厂主要分布在日本本土、中国、泰国、印度尼西亚等十多个制造中心,KDS 大真空集团总公司位于日本兵库县加古川,在泰国,印度尼西亚,台湾,中国天津这些大城市均有生产工厂,其中天津工厂是全球晶振行业最大的单体制造工厂,也是全球最大的 TF 型晶振制造工厂.
首先非常的感谢你长期以来对【日本大真空株式会社】,KDS 晶振品牌的支持与厚爱.在此郑重声明,本集团以下简称(KDS)在中国的代理商除了北京中国电子研究院,广州电子研究所,【维多利亚老品牌值得信赖线路】,香港 KDS办事处,台湾KDS办事处,是正规的代理销售企业,其余地区以及公司,个人所销售的KDS产品均不能保证是原装正品,请你选择正规渠道定制货品.
1XTV26000JBA|KDS晶振|株式会社大真空|VC-TCXO振荡器
Model Name 型号 DSA321SDM Original code 原厂代码 1XTV26000JBA Device Name 产品名称系列 VC-TCXO(压控温补振荡器) Nominal Frequency 标称频率 26 MHZ Supply Voltage 电源电压
3.3V Load Impedance 负载阻抗 (resistance part)(parallel capacitance)
10 kΩ
10 pF
Control Voltage Range 控制电压范围
1.15 V Operating Temperature Range 工作温度范围
-40~+85℃ Storage temperature 储存温度
-40~+85℃ Current Consumption 电流消耗
1.5 mA Output Level 输出电平
0.8 Vp-p Symmetry 对称性
40/60% Harmonics 谐波
-8 dBc
SIZE 尺寸 3.2*2.5*0.9mm 1XTV26000JBA晶振产品尺寸图
1XTV26000JBA晶振产品电气表
关于1XTV26000JBA压控温补振荡器产品安装的注意事项
1端子A通孔不在底部(安装侧)。
2土地图案布局/金属掩模孔以下土地图案为参考设计。电气特性应满足安装在这片土地上的要求。在测试用地和安装用地不相连的范围内,可以改变接地方式。
对电特性没有任何影响。面罩厚度建议为0.12毫米。包装条件
胶带包装
(1)压花胶带格式及尺寸
(2)卷筒数量:最多2000个/卷
(3)胶带规格
不缺产品。
(4)卷筒规格见图3
包装
产品用防静电袋包装。
*湿度敏感度等级:IPC/JEDEC标准J-STD-033/1级
无需干燥包装,无需重新储存后烘烤。
包装箱
最多10卷/包装箱。但是,在少于10卷的情况下,它由任何盒子容纳。
盒子里的空间用垫子填满了。
- 阅读(88)
- [晶振编码查询]1XXB26000MAA|KDS晶振|株式会社大真空|TCXO振荡器2019年08月20日 09:24
1XXB26000MAA|KDS晶振|株式会社大真空|TCXO振荡器
Model Name 型号 DSB221SDN晶振 Original code 原厂代码 1XXB26000MAA Device Name 产品名称系列 TCXO(温补振荡器) Nominal Frequency 标称频率 26 MHZ Supply Voltage 电源电压
1.8V Load Impedance 负载阻抗 (resistance part)(parallel capacitance)
10 kΩ
10 pF
Control Voltage Range 控制电压范围
1.15 V Operating Temperature Range 工作温度范围
-40~+85℃ Storage temperature 储存温度
-40~+85℃ Current Consumption 电流消耗
1.5 mA Output Level 输出电平
0.8 Vp-p Symmetry 对称性
40/60% Harmonics 谐波
-8 dBc
SIZE 尺寸 2.5*2.0*0.8mm 1XXB26000MAA晶振产品尺寸图
1XXB26000MAA晶振产品电气表
关于1XXB26000MAA温补晶振产品安装的注意事项
1端子A通孔不在底部(安装侧)。
2土地图案布局/金属掩模孔以下土地图案为参考设计。电气特性应满足安装在这片土地上的要求。在测试用地和安装用地不相连的范围内,可以改变接地方式。
对电特性没有任何影响。面罩厚度建议为0.12毫米。包装条件
胶带包装
(1)压花胶带格式及尺寸
(2)卷筒数量:最多2000个/卷
(3)胶带规格
不缺产品。
(4)卷筒规格见图3
包装
产品用防静电袋包装。
*湿度敏感度等级:IPC/JEDEC标准J-STD-033/1级
无需干燥包装,无需重新储存后烘烤。
包装箱
最多10卷/包装箱。但是,在少于10卷的情况下,它由任何盒子容纳。
盒子里的空间用垫子填满了。
- 阅读(132)
- [晶振编码查询]1XTW16368MAA|KDS晶振|株式会社大真空|TCXO振荡器2019年08月02日 15:06
1XTW16368MAA|KDS晶振|株式会社大真空|TCXO振荡器
Model Name 型号 DSB321SDN晶振 Original code 原厂代码 1XTW16368MAA Device Name 产品名称系列 TCXO(温补振荡器) Nominal Frequency 标称频率 16.368 MHZ Supply Voltage 电源电压
2.8V Load Impedance 负载阻抗 (resistance part)(parallel capacitance)
10 kΩ
10 pF
Control Voltage Range 控制电压范围
1.15 V Operating Temperature Range 工作温度范围
-30~+85℃ Storage temperature 储存温度
-55~+125℃ Current Consumption 电流消耗
1.5 mA Output Level 输出电平
0.8 Vp-p Symmetry 对称性
40/60% Harmonics 谐波
-8 dBc
SIZE 尺寸 3.2*2.5*0.9mm
1XTW16368MAA晶振产品尺寸图
1XTW16368MAA晶振产品电气表
关于1XTW16368MAA温补晶振产品安装的注意事项
1端子A通孔不在底部(安装侧)。
2土地图案布局/金属掩模孔以下土地图案为参考设计。电气特性应满足安装在这片土地上的要求。在测试用地和安装用地不相连的范围内,可以改变接地方式。
对电特性没有任何影响。面罩厚度建议为0.12毫米。包装条件
胶带包装
(1)压花胶带格式及尺寸
(2)卷筒数量:最多2000个/卷
(3)胶带规格
不缺产品。
(4)卷筒规格见图3
包装
产品用防静电袋包装。
*湿度敏感度等级:IPC/JEDEC标准J-STD-033/1级
无需干燥包装,无需重新储存后烘烤。
包装箱
最多10卷/包装箱。但是,在少于10卷的情况下,它由任何盒子容纳。
盒子里的空间用垫子填满了。- 阅读(102)
- [技术支持]什么是三态函数2019年04月01日 14:24
What is Tri-State Function?
トライステート関数とは
1. In oscillator with Tri-state function, oscillator output can be controlled by the Tri-state pin as follows:
Logic High : Output Enable
Logic Low :Output Disable
トライステート機能付きオシレータでは、次のようにトライステートピンでオシレータ出力を制御できます。
ロジックハイ:出力イネーブル
ロジックロー:出力ディセーブル
2. The Tri-state function would allow output pin to assume high-impedance state, effectively removing the oscillator output from the circuit.トライステート機能により、出力ピンをハイインピーダンス状態にすることができ、回路から発振器の出力を効果的に取り除くことができます。
3. Oscillator circuits can remain on or be turned off while output is disabled in Tri-State.
出力がトライステートでディスエーブルされている間、発振回路はオンのままにするかオフにすることができます。
Oscillator Operating Mode in Tri-state:Oscillator Circuits Off
トライステートの発振器動作モード:発振器回路オフ
•Advantage :Lower standby current
•利点:スタンバイ電流が低い
•Drawback :Longer startup time:( Fundamental mode > 0.2mS),( 3rd Overtone mode > 2mS)
•欠点:起動時間が長くなります:(基本モード> 0.2ミリ秒)、(3倍音モード> 2ミリ秒)
Oscillator Operating Mode in Tri-state:Oscillator Circuits On
トライステートのオシレータ動作モード:オシレータ回路オン
•Advantage:Shorter output enable time(< 0.1mS)
利点:短い出力イネーブル時間(<0.1mS)
•Drawback:Higher standby current
欠点:高いスタンバイ電流
Standby Current Comparison between Different Oscillator Operating Mode
異なる発振器動作モード間の待機電流の比較
Standby Current
Supply Voltage(VDD)
1.8V
2.5V
2.8V
3.3V
5V
Oscillator off
22MHz
0.4uA
0.5uA
1.1uA
1.6uA
4.1uA
44MHz
0.4uA
1.5uA
1.7uA
2.3uA
6.1uA
Oscillator on
22MHz
0.33mA
0.5mA
1.16mA
44MHz
2.1mA
3.4mA
13.5mA
•Only PX/PY series have oscillator on/off option when output is disabled.
出力が無効の場合、PX / PYシリーズのみオシレータのオン/オフオプションがあります。
•All other oscillator series have oscillator turned off in Tri-state.
他のすべての発振器シリーズは、トライステートで発振器がオフになっています。
How to Disable Tri-State Function
トライステート機能を無効にする方法
•If Tri-state function is no needed, the Tri-state pin shall be connected to the Vcc pin or left floating.
トライステート機能が不要な場合は、トライステートピンをVccピンに接続するか、フローティングのままにします。
There is a internal pull- up resistor which would enable output if Tri-state pin is left floating.
トライステートピンをフローティングのままにしておくと、出力をイネーブルする内部プルアップ抵抗があります。
•TAITIEN recommends connecting Tri-State pin to VCC if Tri-state function is not needed.
トライステート機能が不要な場合は、トライステート端子をVCCに接続することをお勧めします。
- 阅读(447)
- [行业新闻]TXC温补振荡器及VCXO振荡器系列选型手册2019年03月04日 14:38
TXC晶振有分好多種類型,溫補晶體振蕩器,壓控振蕩器,恒溫晶體振蕩器OCXO振蕩器.以下泰河電子為大家整理提供已分好類別的TXC溫補振蕩器及VCXO振蕩器選型表,以供大家選型參考使用.雖然TXC晶振的型號眾多,但是並不會難記.
TXC压控振荡器VCXO系列 - 差分晶振
一般来说单相输出称之为晶体振荡器,并以正弦波或者CMOS波型(矩型波)输出为主要代表.
剪切的正弦波输出具有类似圆角矩形的波形,并常用于RF电路,因为它抑制了不必要的谐波.TCXO(温度补偿晶体振荡器)被称为削波正弦波输出的产物.由于CMOS波输出是对应于数字信号处理的逻辑电子的信号输出,所以有利于数字信号的传送,并用于时钟,如CPU等.
Model Frequency Stability
(-40~85ºC)Voltage Output Oscillation Dimensions BJ 60 ~ 200MHz ±50ppm 3.3V LVPECL Fundamental 7 x 5 x 1.3mm BK 60 ~ 700MHz ±50ppm 3.3V LVPECL PLL 7 x 5 x 1.3mm BN 60 ~ 200MHz ±50ppm 3.3V LVDS Fundamental 7 x 5 x 1.3mm BP 60 ~ 700MHz ±50ppm 3.3V LVDS PLL 7 x 5 x 1.3mm CJ 60 ~ 200MHz ±50ppm 3.3V LVPECL Fundamental 5 x 3.2 x 1.2mm CN 50 ~ 200MHz ±50ppm 3.3V LVDS Fundamental 5 x 3.2 x 1.2mm TXC温补振荡器TCXO系列 - Basic
什么是温补晶振。来自温度传感器的输出信号用于通过补偿网络产生校正电压。 校正电压施加到VCXO中的变容二极管。 电容变化可以补偿晶体的频率与温度特性.
Model Frequency Stability
(-30~85ºC)Operating Temp Voltage Output Dimensions 7Q 13 ~ 52MHz ±2ppm -40~+85ºC 2.4V-3.3V Clipped
Sinewave3.2 x 2.5 x 1mm 7L 13 ~ 52MHz ±2ppm -40~+85ºC 1.8V-3.3V Clipped
Sinewave2.5 x 2 x 0.8mm 7Z 26 ~ 52MHz ±2ppm -40~+85ºC 1.8V-3.3V Clipped
Sinewave2.0 x 1.6 x 0.8mm 8P 26 ~ 52MHz ±2ppm -40~+85ºC 1.8V-3.3V Clipped
Sinewave1.6 x 1.2 x 0.6mm TXC温补振荡器TCXO系列 - 高精度振荡器 Model Frequency Stability
(-40~85ºC)Voltage Output Dimensions 7N 10 ~ 52MHz ±0.28ppm 2.7V-5.5V Clipped
Sinewave
/CMOS7 x 5 x 2mm 7P 10 ~ 52MHz ±0.28ppm 2.7V-5.5V Clipped
Sinewave
/CMOS5 x 3.2 x 1.2mm TXC恒温晶体振荡器OCXO系列 - CMOS Model Frequency Stability Voltage Output Dimensions OC 10 ~ 25MHz ±5ppb
(0~70ºC)5, 12V CMOS 36 x 27mm OB 10 ~ 25MHz ±10ppb
(0~75ºC)3.3, 5V CMOS 25 x 25mm OA 10 ~ 40MHz ±200ppb
(-30~70ºC)3.3, 5V CMOS 20 x 20mm - 阅读(240)
- [行业新闻]希華晶體高精度型号表2019年03月01日 13:50
希華晶體公司眾所周知的是它是壹家臺灣品牌的晶體頻率元器件制造。關於希華晶體我們知道多壹點的就是SIWARD晶體公司是世界領先的石英晶振與晶體振蕩器的解決方案商之壹。為了滿足全球不斷增長對電信的需求,希華晶體也在做著不同的改變,希華晶體壹直在改進自身的生產技術以及服務質量。臺灣希華晶振公司成立於1988年,對全球的石英晶體,振蕩器以及濾波器的研發,生產與銷售。產品應用於移動通信,平板電腦,GPS定位系統,計算機時鐘等產品。
希华晶振之TCXO振荡器系列 希华晶振之贴片VCTCXO振荡器系列 系列 照片 尺寸 频率范围 STV-25202.5 x 2.0 x 0.816~52MHzSTV-32253.2 x 2.5 x 0.98~52 MHzVTX835.0 x 3.2 x 1.056~45 MHz希华晶振之VCXO晶振系列 系列 照片 尺寸 频率范围 SCV-32253.2 x 2.5 x 0.91.5~54 MHzVCX955.0 x 3.2 x 1.11.5~61.440 MHzVCX917.0 x 5.0 x 1.61.5~54 MHzVCX927.0 x 5.0 x 1.61.5~54 MHz
SIWARD Crystal Company is well known for its manufacture of crystal frequency components under one Taiwan brand. We know that SIWARD Crystal is one of the world's leading quartz oscillator and crystal oscillator solutions. In order to meet the growing global demand for telecommunications, SIWARD Crystal is also making different changes. Sihua Crystal has been improving its production technology and service quality. Taiwan SIWARD CRYSTAL Co., Ltd. was founded in 1988. It develops, produces and sells quartz crystals, oscillators and filters all over the world. Products used in mobile communications, tablet computers, GPS positioning systems, computer clocks and other products.
- 阅读(278)
- [行业新闻]中国人正确过2月14日的方式2019年02月14日 09:43
今天2019年2月14日是一年一度大家口中所谓的”情人节”,也可以说是”情人劫”吼.从字面的意思上来讲并不是情侣夫妻之间的节日,而是情人过的节.所以,大家还是那么高兴又那么期待的要过情人节吗?
其实说起这个情人节的来源,真的,它并非是我们中国的节日,而是西方国家的传统节日之一.情人节又叫圣瓦伦丁节或者圣华伦泰节.(好长的名字,读起来又贼拗口).起源于基督教.原本的意思是男女间相互送花,巧克力,贺卡以及表达爱意或者友好的日子.晚餐约会通常代表了情侣关系的发展关键.然后各国的商家借此商机做活动,再慢慢的也成为了各国青年人喜爱的日子.情人节便开始流行起来.
但,我们不能在每天都过着安稳日子的时候忘记了那些革命的艰辛.我们应该多去了解一些历史.比如说国内,都出现了一些什么大事情.
1912年2月14日 孙中山辞去临时大总统一职
106年前,1912年2月14日(辛亥年腊月廿七),孙中山辞去临时大总统一职。
♦ 1935年2月14日 蒋介石在庐山答日本《朝日新闻》记者
83年前,1935年2月14日,蒋介石在庐山答日本《朝日新闻》记者问时称:“中日两国不仅在东亚大局上看来有提携之必要,即为世界大局设想,亦非提携不可。”“中国不但无排日之行动思想,亦无排日之必要。”
♦ 1949年2月14日 李宗仁派和平使团与中共谈判
69年前,1949年2月14日,上海“和平使者团”颜惠庆、邵力子、章士钊等16人受李宗仁之托,以私人资格乘飞机到达北平,与中共方面商谈国事。
♦ 1949年2月14日 美国谋求台湾独立失败
69年前,1949年2月14日,美驻华参赞莫成德自南京秘密飞往台北,游说台湾省主席陈诚“自立”。陈诚不从。美方又想以孙立人替陈诚。孙毕业于美国弗吉尼亚军事学院,是国民党军队中留美出身的唯一高级将领,时任台湾防卫司令,但孙对蒋亦无二心。美拉孙计划一厢情愿。
♦ 1950年2月14日 《中苏友好同盟互助条约》在莫斯科签订
68年前,1950年2月14日,经过毛泽东、周恩来同斯大林、维辛斯基会谈,两国政府在莫斯科签订《中苏友好同盟互助条约》,同年4月11日起生效,有效期30年。双方还签订《中苏关于中国长春铁路、旅顺口及大连的协定》、《中苏关于贷款给中华人民共和国的协定》。
♦ 1958年2月14日 周恩来出访朝鲜,中国政府决定撤军。
60年前,1958年2月14日,周恩来率我国政府代表团访问朝鲜,协商撤军一事。
♦ 1963年2月14日 中央美术展览馆建成
55年前,1963年2月14日,中央美术展览馆(中国美术馆)由毛泽东主席题写“中国美术馆”馆额并正式开放,是新中国成立以后的国家文化标志性建筑。主体大楼为仿古阁楼式,黄色琉璃瓦大屋顶,四周廊榭围绕,具有鲜明的民族建筑风格。主楼建筑面积18000多平方米 ,一至五层楼共有17个展览厅,展览总面积8300平方米;1995年新建现代化藏品库,面积4100平方米。
♦ 1972年2月14日 我国与墨西哥建立外交关系
46年前,1972年2月14日,墨西哥同中国建交。建交后,两国关系发展顺利。墨历任总统均在任内访华,中国**主席、政府总理等领导人先后访墨。
♦ 1981年2月14日 邓小平为英国培格曼出版公司编辑出版的《邓小平副主席文集》作序
37年前,1981年2月14日,由英国培格曼出版公司编辑出版的这本文集,收集了邓小平1956年到1979年的部分讲话,内容涉及政治、科学、教育、文艺等几个方面。从50年代中期到70年代末,世界历史在错综复杂的矛盾和激烈的动荡中发展,社会主义中国和中国共产党也走过了自己的很不寻常的道路。
♦ 1983年2月14日 中共中央发出《关于加强党员教育工作的通知》
35年前,1983年2月14日,中共中央发出《关于加强党员教育工作的通知》。《通知》指出:认真学习党的十二大制定的社会主义现代化建设的纲领和大会通过的新党章,是今后一个时期党员教育的主要内容,是提高党员素质、提高党组织战斗力和实现党风根本好转的重要一环,是全党的一件大事。抓好这件大事,要党委负责,全党动手。
♦ 1986年2月14日 国家自然科学基金委员会成立。
32年前,国务院于1986年2月14日批准成立国家自然科学基金委员会,作为管理国家自然科学基金的国务院直属事业单位,自然科学基金委根据国家发展科学技术的方针、政策和规划,有效运用国家自然科学基金,支持基础研究,坚持自由探索,发挥导向作用,发现和培养科学技术人才,促进科学技.
然后国外的2月14日这天,也发生了很多大事件.最令大家关注的可能会是情人节的由来.其实,这个节日说好听点就是为了祭奠瓦伦丁.说难听点就是...后面大伙自个补充,我怕被群殴…其实这个版本也有很多,大家想了解更多一点可以去找一下相关资料.
♦ 公元270年2月14日 为纪念瓦伦丁为爱牺牲,2月14日被定为情人节
1748年前,公元270年2月14日,罗马圣教徒瓦伦丁被处死,基督教徒为了纪念瓦伦丁为纯洁的爱而牺牲自己,将临刑的这一天定为“圣瓦伦节”,此日被后人定为“情人节”
♦ 1076年2月14日 罗马皇帝亨利四世被教皇驱逐出天主教,政教冲突爆发
942年前,1076年2月14日,神圣罗马皇帝亨利四世(Heinrich IV)被罗马教皇格列高利七世。按照天主教廷规定,被处罚者如不能在一年之内获得教皇的宽恕,他的臣民都要对他的解除效忠宣誓。德意志大部分诸侯表示,如果亨利四世不能在一年之内恢复教籍,他们就不再承认他的合法性。亨利四世没有足够的兵力来制服反叛的诸侯,他不得不向格列高利七世低头。
♦ 1859年2月14日 美国合并俄勒冈州
159年前,1830年以后,成千上万的美国人从中西部迁移到西北部太平洋沿岸。在他们走过的俄勒冈小道上,至今仍可见当年篷车压出的车辙。1848年建立俄勒冈地区。1859年2月14日加入联邦,为美国第33州。
♦ 1876年2月14日 贝尔向美国专利局递交了电话发明专利申请书
142年前,1876年2月14日,贝尔申请了那个著名的他和沃森一直研究着的装置——电话的专利。同一天另一个发明家格雷(1835-1901)也向美国专利局递交了相似设备的专利申请书,只因比贝尔晚了几个小时而痛失电话发明权。贝尔获得电话的专利证书。
♦ 1879年2月14日 智利同玻利维亚、秘鲁两国爆发南美太平洋战争
139年前,1879年2月14日(己卯年正月廿四),智利同玻利维亚、秘鲁两国爆发争夺南太平洋沿岸阿塔卡马荒漠硝石产地的战争。
♦ 1946年2月14日 世界上第一台计算机诞生
72年前,1946年2月14日,由美国军方定制的世界上第一台电子计算机“电子数字积分计算机”(ENIACElectronicNumericalAndCalculator)在美国宾夕法尼亚大学问世了。
♦ 1956年2月14日 苏共二十大上赫鲁晓夫作反斯大林的秘密报告
62年前,1956年2月14日,赫鲁晓夫上台后召开党的二十次代表大会,会议期间,赫鲁晓夫作了反斯大林的秘密报告。
♦ 1958年2月14日 约旦--伊拉克成立阿拉伯联邦
60年前,1958年2月1日,埃及和叙利亚成立阿拉伯联合共和国。约旦、伊拉克认为新成立的阿联对它们具有潜在的威胁而必须组成新联邦。1958年2月14日伊拉克国王费萨尔,约旦国王侯赛因在安曼宣布两国并为一个“阿拉伯联邦”,即“伊约联邦”。
♦ 1967年2月14日 拉美21国签署《拉丁美洲禁止核武器条约》
51年前,《拉丁美洲禁止核武器条约》亦称《特拉特洛尔科条约》。墨西哥、智利等14个拉丁美洲国家于1967年2月14日在墨西哥城的特拉特洛尔科区签订,无限期有效。
♦ 1983年2月14日 印度发生阿萨姆邦屠杀事件
35年前,1983年2月14日,正当印度阿萨姆邦全力以赴进行邦议会选举时,社区间的暴力活动席卷了这个邦,造成几千人死亡。
♦ 1989年2月14日 霍梅尼宣布判处英国作家拉什迪死刑
29年前, 英国作家萨曼·拉什迪因出版一本名为《撒旦诗篇》的小说,遭到了穆斯林世界的强烈反对。1989年2月14日,伊朗宗教领袖霍梅尼宣布判处拉什迪死刑,并悬赏数百万美元追杀他。由此引起了一场国际风波。
♦ 1992年2月14日 联合国宣布1991年世界经济出现战后首次负增长
26年前,1992年2月14日,联合国宣布1991年世界经济出现战后首次负增长
还有很多很多的事迹没有写完,如果大大小小写在一起的话,估计几本书还不够出呢.上面这些都还是一些精选的国内外大事件来的.并且还是没有说完.看完,是不是发现有很多事迹都没看过,也没有了解过.说实话我也是.因为咋天无意之间刷到一条抖音讲的是2月14日国内所发生的大事件,所以才会有想去查阅资料的冲动.情侣间只要关系好,每天都是情人节,也不会在意多这么一天.而现在的人儿除了吃饭睡觉打豆豆玩手机电脑游戏,很少人去看些新闻,了解一些历史.做为晶振销售人员一周只有一天休息,所以我会选择在家睡觉睡到自然醒,但很少能够满足.因为我们石英晶振的业务手机都会24小时开机为客户服务.不敢关机也不敢调无声,因为怕客户找不上我们会着急.如果可以的话,我也还是会想去多了解一些历史的.毕竟读书的时候历史成绩一直都不太理想…
- 阅读(352)
- [技术支持]TCXO温度补偿振荡器如何实现功能2018年12月24日 14:16
当需要标准XO(晶体振荡器)或VCXO(压控晶体振荡器)无法达到的温度稳定性时,TCXO是必需的.
温度稳定性是振荡器频率随温度变化的量度,并且以两种方式定义.一种常见的方法是使用“加/减”规格(例如:±0.28ppm对比工作温度范围,参考25°C-温度范围通常为-40至85°C或-20至70°C).该规范告诉我们,如果我们将25°C的频率设为标称频率,则器件频率将偏离或低于该标称频率不超过0.28ppm.这与指定温度稳定性的第二种方式不同,即使用峰峰值或仅使用没有参考点的正/负值.在第二种情况下,我们不能说我们知道频率会高于或低于频率将会发生多大变化-只是我们知道总的范围是多少.通常,使用来自定义的参考点的正负值来指定设备.
TCXO晶振对工程师非常有用,因为它们可以在比电路板上具有相同功耗和占用空间的标准VCXO更好的温度稳定性的10倍到40倍之间使用.TCXO弥合了标准XO或VCXO与OCXO之间的差距,这些差距更高,需要更多功率才能运行.推动技术的目标是降低功耗,当然还要降低成本,因此TCXO为功耗和成本敏感的应用提供了良好的中端解决方案.
Figure1.TheTemperatureStabilityrangesofvariousoscillatortypes
图1是不同振荡器类型的典型温度稳定性的示意图,范围从标准VCXO的50ppm到高性能OCXO的0.2ppb.轴反转使得曲线在增加温度稳定性的方向上增长.TCXO稳定性范围涵盖VCXO和OCXO之间的中间位置(在某些情况下,重叠某些OCXO性能).
TCXO晶振温度稳定性水平(从5ppm到50ppb)通常是必要的,因为振荡器将独立工作,无论是在没有外部频率参考的系统中的自由运行模式,还是作为固定频率参考TCXO在开环中工作的合成器,用于驱动DDS(直接数字合成),而DDS而不是TCXO被“锁定”到外部参考.
后一种情况(TCXO是开环,频率在DDS设置)正变得越来越普遍,因为设计人员发现使用DDS解决方案可以通过使用数模转换器控制TCXO来实现更好的频率分辨率.由于转向是在DDS而不是振荡器中完成的,因此设计人员需要能够对固定基准的频率如何随温度变化做出某些假设,以便他们可以相应地规划锁相环的设计.由于灵活性,它们允许TCXO用于许多频率控制应用,但一个重要领域是小型蜂窝基站(毫微微,微型和微微),通常它们被用作定时分配芯片的固定频率源.
TCXO温度补偿晶振如何运作
在非常基本的术语中,TCXO通过采用温度补偿网络来操作,该网络感测环境温度并将晶体拉至其标称值.基本振荡器电路和输出级与VCXO中的预期相同.
图2是简化的TCXO功能框图.
图2.TCXO功能块
这个想法是补偿网络驱动牵引网络,然后调整振荡器的频率.
图3是发生了什么的概述-未补偿的晶振频率响应温度(红色)就像一个三阶多项式曲线(如果你采用振荡器非线性效果,更像是第五个),所以目标是补偿网络是为了抵消温度对晶体的影响而产生的电压是有效的关于晶体曲线温度轴的镜像.补偿电压显示为蓝色,得到的频率/温度曲线以绿色显示.
图3.温度补偿
实现这一目标的方法随着时间而改变.使用的第一种方法之一是直接补偿技术,其中使用热敏电阻,电容器和电阻器网络来直接控制振荡器的频率.温度的变化导致热敏电阻(图4中的RT1和RT2)发生变化,这会导致网络的等效串联电容发生变化-这反过来会改变晶体上的电容负载,从而导致频率的变化.振荡器.
图4.直接补偿
在随后的开发中(图5中所示的间接补偿),热敏电阻(RT1至RT3)和电阻(R1至R3)的网络用于产生与温度相关的电压.对网络的输出电压进行滤波,然后用于驱动变容二极管,该变容二极管改变晶振上的负载,再次导致频率变化.
图5间接补偿
目前的方法将补偿网络和拉网络集成到一个集成电路中(如图6所示),补偿网络的作用由一组运算放大器组成,这些运算放大器在一起产生温度上的3阶或5阶函数.与间接补偿方法一样,该电压用于驱动变容二极管,这反过来又改变了振荡器的输出频率.由于晶体特性的变化意味着没有“一刀切”的功能,因此在TCXO的温度测试期间得出了解决方案.两个电容器阵列用于将室温下的频率调节到标称值,然后在测试期间获得温度补偿功能所需的设置并存储在片上存储器中.
图6综合补偿
最后一种方法通常被称为“数字控制模拟补偿”,并且在小型TCXO设计中常见,因为可以在单个ASIC中提供大量功能.
- 阅读(521)
- [技术支持]什么是差分晶振的相位噪声2018年12月17日 14:17
诸如晶体振荡器之类的信号源在输出频率附近产生一小部分不希望的能量(相位噪声)。 随着通信和雷达等系统性能的提高,它们采用的晶体振荡器的频谱纯度越来越重要。
在频域中测量相位噪声,并且表示为在与期望信号的给定偏移处的1Hz带宽中测量的信号功率与噪声功率的比率。在所需信号的各种偏移处的响应图通常由对应于振荡器中的三个主要噪声产生机制的三个不同斜率组成,如图1所示。相对靠近载波(区域A)的噪声称为闪烁FM噪声;其大小主要取决于晶体的质量。 最佳近距离噪声结果是在4-6 MHz范围内使用5次泛音AT切割晶体或第3次泛音SC切割晶体获得的。虽然平均效果不是很好,但使用10 MHz区域中的3个泛音晶体也可以获得出色的近距离噪声性能,尤其是双旋转型(参见第41页,有关双旋转SC和IT切割晶体的讨论)。较高频率的晶体由于其较低的Q值和较宽的带宽而导致较高的近距噪声。
图1中B区的噪声称为“1 / F”噪声,是由半导体活动引起的。采用低噪声“L2”晶体振荡器的设计技术将其限制在非常低的,通常无关紧要的值。
图1的区域C称为白噪声或宽带噪声。 “L2”晶体振荡器中的特殊低噪声电路相对于标准设计提供了显着的改进(15-20 dB)。
当采用倍频从较低频率的石英晶体获得所需的输出频率时,输出信号的相位噪声增加20 log(倍增因子)。这导致整个电路板上的噪声降低大约为6 dB,用于倍频,10 dB用于频率三倍,20 dB用于十倍乘法。
如图2所示,对于不采用倍频的振荡器,本底噪声几乎与晶体频率无关。因此,对于低噪声地板应用,通常应使用满足长期稳定性要求的最高频率晶体。然而,当较高频率的应用特别需要最小的近端相位噪声时,较低频率的晶体通常可以成倍增加。这是因为近距离相位噪声比使用更高频率晶体获得的噪声性能更不成比例地好。
请注意,与固定频率非补偿晶体振荡器相比,TCXO和VCXO产品中常用的变容二极管和中等Q晶体的引入导致较差的近距离噪声性能。
相位噪声测试
相位噪声测试通过确定在指定输出频率下由振荡器传递的所需能量与在相邻频率传递的不需要的能量的比率来表征振荡器的输出频谱纯度。 该比率通常表示为在来自载波的各种偏移频率下执行的一系列功率测量。功率测量被标准化为1Hz带宽并且相对于载波功率电平表示。 这是NIST技术说明1337中描述的标准相位波动测量,称为l(f)。
图3示出了由NIST建议并由Vectron晶振用于测量l(f)的方法的框图。来自两个相同标称频率的振荡器的信号被施加到混频器输入。除非振荡器具有出色的稳定性,否则一个振荡器必须具有用于锁相的电子调谐。非常窄的频带锁相环(PLL)用于在这两个源之间保持90度的相位差。混频器操作使得当输入信号异相90度(正交)时,混频器的输出是与两个振荡器之间的相位差成比例的小波动电压。通过在频谱分析仪上检查该误差信号的频谱,可以测量这对振荡器的相位噪声性能。如果一个振荡器的噪声占主导地位,则直接测量其相位噪声。当两个测试振荡器电气相似时,有用且实用的近似是每个振荡器贡献测量噪声功率的一半。当三个或更多个振荡器可用于测试时,可以通过求解表示从振荡器对的置换测量的数据的联立方程来精确地计算每个振荡器的相位噪声。
图4显示了实际的l(f)测量系统。 使用该系统测量相位噪声的步骤如下:
1.频谱分析仪屏幕的校准。
2.Phase锁定振荡器并建立正交。
3.记录频谱分析仪读数并将读数标准化为每个振荡器的dBc / Hz SSB。
这些步骤详述如下。
第一步 - 校准
为避免混频器饱和,一个振荡器的信号电平会被10 dB衰减(衰减器“A”)永久衰减。在校准期间,此振荡器的电平额外衰减80 dB(衰减“B”),以改善频谱分析仪的动态范围。振荡器在频率上是机械偏移的,并且所得到的低频差拍信号的幅度表示-80dB的水平;它是所有后续测量的参考。使用扫频分析仪时,此电平调整到频谱分析仪屏幕的顶行。使用数字(FFT)频谱分析仪时,仪器经过校准,可读取相对于此电平的RMS VOLTS /√Hz。当完全电平恢复到混频器并且振荡器被锁相时,将相对于-80dB电平测量相位噪声。
第二步 - 锁相
通过将振荡器机械地调节到相同的频率,振荡器被锁相到正交。当混频器输出为0 Vdc时,指示两个振荡器之间所需的90度相位差。临时连接到频谱分析仪的示波器或零中心电压表是监测正交进度的便捷方式。 PLL的工作带宽必须远低于感兴趣的最低偏移频率,因为PLL部分地抑制了其带宽中的相位噪声。广泛使用的建立适当环路带宽的经验方法是通过衰减器“C”逐步衰减电压控制反馈。通过在推进衰减器“C”的同时比较感兴趣的最低偏移频率处的连续噪声测量,可以找到操作点,其中测量的相位噪声不受衰减器设置的变化的影响。此时,环路带宽不是测量的相位噪声的因子。
第三步 - 读物
读数是根据先前在步骤1中建立的-80dB校准水平进行的。如果频谱分析仪配备齐全以避免测量变化,则使用平滑或平均。 扫描频谱分析仪读数通常需要进行以下每项校正,而以RMS /√Hz显示的数字分析仪读数不需要前两次校正。有关分析仪噪声响应的校正,应参考分析仪手册。
更正
归一化为1 Hz带宽“BW”是测量带宽。 计算假设为10 log10(1 / BW)
10 log10(1/BW)
测量带宽内的噪声是平坦的
扫频分析仪对噪声信号的视频响应。下+ 3dB
+3dB
双边带到单边带显示。-6dB
-6dB
两个振荡器的贡献假设它们具有相同的噪声质量-3dB
-3dB
- 阅读(293)
- [常见问题]爱普生新型号FC-135R晶振详细参数2018年11月24日 15:30
爱普生新款产品FC-135R晶振的研发问世让更多消费者们更加的青睐于爱普生晶振系列产品.FC-135R晶振研发,可以从以下参数可以知道FC-135R晶振的频率偏差相对来说是比FC-135晶振较稳定的.频率偏差都是在10PPM与20PPM范围内,而FC-135晶振频率偏差则在10ppm,20ppm,甚至30ppm范围中,并且ESR的阻值比FC-135R晶振的阻值大.
FC-135R晶振参数表
项目 符号 FC-135R晶振产品规格 条件 标称频率范围 f_nom 32.768 kHz 32 kHz至77.5 kHz 请联系我们获取相应的频率。 储存温度 T_stg -55°C至+ 125°C 保存为单个项目 工作温度 T_use -40°C至+ 85°C(+ 105°C) 请联系我们+ 85°C 激励程度 D L 0.5μW(最大1.0μW) 最大1.0μW。如有疑问,请联系我们。 频率容差偏差
(标准)f_tol ±20×10 -6 + 25°C,D L =0.1μW
请咨询高精度产品。顶点温度 钛 + 25°C±5°C 二次温度系数 乙 -0.04×10 -6 /°C 2最大 负载能力 C L 7 pF,9 pF,12.5 pF 请注明 串联电阻 R 1 最大70kΩ 70kΩ至45kΩ 系列容量 C 1 3.4 fF Typ。 3.7 fF至1.6 fF 并行容量 C 0 1.0 pF Typ。 1.3 pF至0.5 pF 频率老化 f_age ±3×10 -6 /年最大 + 25°C,第一年 以下是FC-135R晶振详细参数的编码,一个编码内部有指定相对应的频率,尺寸,负载电容,频率偏差,工作温度,ESR阻值等其它参数.
FC-135R晶振详细参数对应编码表
晶振型号编码 尺寸(长宽高) 型号 频率 负载电容 频率偏差 工作温度 ESR阻值 驱动电平[最大] 周转温度 二次温度系数 年老化率@+25C[Max] 端子电镀 X1A000141000100 3.2 x 1.5 x 0.9 mm FC-135R 32.768kHz 7 pF +/-20.0 ppm -40 to +85 °C ≤ 50 KΩ ≤ 0.5 µW +25ºC +/-5ºC -0.04 x 10^-6/°C² +/-3 ppm Au X1A000141000200 3.2 x 1.5 x 0.9 mm FC-135R 32.768kHz 9 pF +/-20.0 ppm -40 to +85 °C ≤ 50 KΩ ≤ 0.5 µW +25ºC +/-5ºC -0.04 x 10^-6/°C² +/-3 ppm Au X1A000141000300 3.2 x 1.5 x 0.9 mm FC-135R 32.768kHz 12.5 pF +/-20.0 ppm -40 to +85 °C ≤ 50 KΩ ≤ 0.5 µW +25ºC +/-5ºC -0.04 x 10^-6/°C² +/-3 ppm Au X1A000141000400 3.2 x 1.5 x 0.9 mm FC-135R 32.768kHz 9 pF +/-10.0 ppm -40 to +85 °C ≤ 50 KΩ ≤ 0.5 µW +25ºC +/-5ºC -0.04 x 10^-6/°C² +/-3 ppm Au X1A000141000500 3.2 x 1.5 x 0.9 mm FC-135R 32.768kHz 12.5 pF +/-10.0 ppm -40 to +85 °C ≤ 50 KΩ ≤ 0.5 µW +25ºC +/-5ºC -0.04 x 10^-6/°C² +/-3 ppm Au X1A000141000600 3.2 x 1.5 x 0.9 mm FC-135R 32.768kHz 6 pF +/-20.0 ppm -40 to +85 °C ≤ 50 KΩ ≤ 0.5 µW +25ºC +/-5ºC -0.04 x 10^-6/°C² +/-3 ppm Au X1A000141001100 3.2 x 1.5 x 0.9 mm FC-135R 32.768kHz 7 pF +/-10.0 ppm -40 to +85 °C ≤ 50 KΩ ≤ 0.5 µW +25ºC +/-5ºC -0.04 x 10^-6/°C² +/-3 ppm Au X1A000141001500 3.2 x 1.5 x 0.9 mm FC-135R 32.768kHz 6 pF +/-15.0 ppm -40 to +85 °C ≤ 50 KΩ ≤ 0.5 µW +25ºC +/-5ºC -0.04 x 10^-6/°C² +/-3 ppm Au X1A000141001600 3.2 x 1.5 x 0.9 mm FC-135R 32.768kHz 6 pF +/-10.0 ppm -40 to +85 °C ≤ 50 KΩ ≤ 0.5 µW +25ºC +/-5ºC -0.04 x 10^-6/°C² +/-3 ppm Au X1A000141001900 3.2 x 1.5 x 0.9 mm FC-135R 32.768kHz 12 pF +/-10.0 ppm -40 to +85 °C ≤ 50 KΩ ≤ 0.5 µW +25ºC +/-5ºC -0.04 x 10^-6/°C² +/-3 ppm Au FC-135晶振参数表
项目 符号 FC-135晶振产品规格 条件 标称频率范围 f_nom 32.768 kHz 请联系我们获取相应的频率。 储存温度 T_stg -55°C至+ 125°C 保存为单个项目 工作温度 T_use -40°C至+ 85°C(+ 105°C) 请联系我们+ 85°C 激励程度 D L 0.5μW(最大1.0μW) 最大1.0μW。如有疑问,请联系我们。 频率容差偏差
(标准)f_tol ±20×10 -6 + 25°C,D L =0.1μW
请咨询高精度产品。顶点温度 钛 + 25°C±5°C 二次温度系数 乙 -0.04×10 -6 /°C 2最大 负载能力 C L 7 pF,9 pF,12.5 pF 请注明 串联电阻 R 1 最大50kΩ 系列容量 C 1 3.4 fF Typ。 并行容量 C 0 1.1 pF Typ。 频率老化 f_age ±3×10 -6 /年最大 + 25°C,第一年 FC-135晶振详细参数对应编码表
LxWxH/尺寸 Model/型号 编码 Frequency/频率 CL Value/负载 Freq.tol./频率 @+25°C Oper. Temper. Range/工作温度 ESR[MAX] 等效串联电阻 Drive Level[Max]驱动电平 Tumover Temperature
拐点温度
Parabolic Coefficient
频率温度系数
Freq.Aging@+25C[Max]
频率老化
Terminal Plating
端子电镀
3.2 x 1.5 x 0.9 mm FC-135 Q13FC1350000100 32.768000 kHz 7 pF +/-10.0 ppm -40 to +85 °C ≤ 70 KΩ ≤ 0.5 µW +25ºC +/-5ºC -0.04 x 10^-6/°C² +/-3 ppm Au 3.2 x 1.5 x 0.9 mm FC-135 Q13FC1350000200 32.768000 kHz 7 pF +/-20.0 ppm -40 to +85 °C ≤ 70 KΩ ≤ 0.5 µW +25ºC +/-5ºC -0.04 x 10^-6/°C² +/-3 ppm Au 3.2 x 1.5 x 0.9 mm FC-135 Q13FC1350000300 32.768000 kHz 9 pF +/-20.0 ppm -40 to +85 °C ≤ 70 KΩ ≤ 0.5 µW +25ºC +/-5ºC -0.04 x 10^-6/°C² +/-3 ppm Au 3.2 x 1.5 x 0.9 mm FC-135 Q13FC1350000400 32.768000 kHz 12.5 pF +/-20.0 ppm -40 to +85 °C ≤ 70 KΩ ≤ 0.5 µW +25ºC +/-5ºC -0.04 x 10^-6/°C² +/-3 ppm Au 3.2 x 1.5 x 0.9 mm FC-135 Q13FC1350000500 32.768000 kHz 12.5 pF +/-10.0 ppm -40 to +85 °C ≤ 70 KΩ ≤ 0.5 µW +25ºC +/-5ºC -0.04 x 10^-6/°C² +/-3 ppm Au 3.2 x 1.5 x 0.9 mm FC-135 Q13FC1350000600 32.768000 kHz 9 pF +/-10.0 ppm -40 to +85 °C ≤ 70 KΩ ≤ 0.5 µW +25ºC +/-5ºC -0.04 x 10^-6/°C² +/-3 ppm Au 3.2 x 1.5 x 0.9 mm FC-135 Q13FC1350000800 32.768000 kHz 9 pF +/-30.0 ppm -40 to +85 °C ≤ 70 KΩ ≤ 0.5 µW +25ºC +/-5ºC -0.04 x 10^-6/°C² +/-3 ppm Au 3.2 x 1.5 x 0.9 mm FC-135 Q13FC1350000900 32.768000 kHz 9 pF +/-8.0 ppm -40 to +85 °C ≤ 70 KΩ ≤ 0.5 µW +25ºC +/-5ºC -0.04 x 10^-6/°C² +/-3 ppm Au 3.2 x 1.5 x 0.9 mm FC-135 Q13FC1350001000 32.768000 kHz 15 pF +/-20.0 ppm -40 to +85 °C ≤ 70 KΩ ≤ 0.5 µW +25ºC +/-5ºC -0.04 x 10^-6/°C² +/-3 ppm Au 3.2 x 1.5 x 0.9 mm FC-135 Q13FC1350001100 32.768000 kHz 12 pF +/-20.0 ppm -40 to +85 °C ≤ 70 KΩ ≤ 0.5 µW +25ºC +/-5ºC -0.04 x 10^-6/°C² +/-3 ppm Au 3.2 x 1.5 x 0.9 mm FC-135 Q13FC1350001200 32.768000 kHz 8 pF +/-20.0 ppm -40 to +85 °C ≤ 70 KΩ ≤ 0.5 µW +25ºC +/-5ºC -0.04 x 10^-6/°C² +/-3 ppm Au 3.2 x 1.5 x 0.9 mm FC-135 Q13FC1350001300 32.768000 kHz 10 pF +/-20.0 ppm -40 to +85 °C ≤ 70 KΩ ≤ 0.5 µW +25ºC +/-5ºC -0.04 x 10^-6/°C² +/-3 ppm Au 3.2 x 1.5 x 0.9 mm FC-135 Q13FC1350001700 32.768000 kHz 12.5 pF +/-30.0 ppm -40 to +85 °C ≤ 70 KΩ ≤ 0.5 µW +25ºC +/-5ºC -0.04 x 10^-6/°C² +/-3 ppm Au 3.2 x 1.5 x 0.9 mm FC-135 Q13FC1350001900 32.768000 kHz 12.5 pF -18.0/+22.0 ppm -40 to +85 °C ≤ 70 KΩ ≤ 0.5 µW +25ºC +/-5ºC -0.04 x 10^-6/°C² +/-3 ppm Au 3.2 x 1.5 x 0.9 mm FC-135 Q13FC1350004900 32.768000 kHz 6 pF +/-20.0 ppm -40 to +85 °C ≤ 70 KΩ ≤ 0.5 µW +25ºC +/-5ºC -0.04 x 10^-6/°C² +/-3 ppm Au 3.2 x 1.5 x 0.9 mm FC-135 Q13FC1350005700 32.768000 kHz 10 pF +/-10.0 ppm -40 to +85 °C ≤ 70 KΩ ≤ 0.5 µW +25ºC +/-5ºC -0.04 x 10^-6/°C² +/-3 ppm Au 3.2 x 1.5 x 0.9 mm FC-135 Q13FC1350006000 32.768000 kHz 6 pF +/-10.0 ppm -40 to +85 °C ≤ 70 KΩ ≤ 0.5 µW +25ºC +/-5ºC -0.04 x 10^-6/°C² +/-3 ppm Au 3.2 x 1.5 x 0.9 mm FC-135 Q13FC1350006100 32.768000 kHz 6.5 pF +/-20.0 ppm -40 to +85 °C ≤ 70 KΩ ≤ 0.5 µW +25ºC +/-5ºC -0.04 x 10^-6/°C² +/-3 ppm Au 3.2 x 1.5 x 0.9 mm FC-135 Q13FC1350006300 32.768000 kHz 18 pF +/-20.0 ppm -40 to +85 °C ≤ 70 KΩ ≤ 0.5 µW +25ºC +/-5ºC -0.04 x 10^-6/°C² +/-3 ppm Au 爱普生FC-135R晶振与FC-135晶振的尺寸大小还是一样的,只是内部的参数有所调整,不仅是从ESR阻值上或者是从频率偏差上有所改善.现在的客户都追求完美,对石英晶振产品的质量也是一样的,只要可以稍稍提高一丁点的准确度,而且保证自身产品正常运行的情况下客户还是原意去使用新产品的.
- 阅读(676)
- [公司新闻]西铁城晶振CMX309晶振2018年11月23日 14:24
CMX309FBC9.8304MTR晶振9.8304MHz晶振CMX309FBC27.000M-UT晶振27MHz晶振CMX309FLC28.322M-UT晶振28.322MHz石英晶振 CMX309FLC12.288MT晶振12.288MHz晶振CMX309FBC10.000MTR晶振10MHz晶振CMX309FBC27.000M-UT晶振27MHz晶振CMX309FLC28.63636M-UT晶振28.63636MHz石英晶振CMX309FLC12.352MT晶振12.352MHz晶振CMX309FBC10.000MTR晶振10MHz晶振CMX309HBC32.000M-UT晶振32MHz晶振CMX309FLC28.63636M-UT晶振28.63636MHz石英晶振 CMX309FLC12.352MT晶振
CMX309晶振产品实物图
12.352MHz晶振CMX309FBC11.0592MTR晶振11.0592MHz晶振CMX309HBC32.000M-UT晶振32MHz晶振CMX309FLC29.498928M-UT晶振29.498928MHz石英晶振 CMX309FLC13.500MT晶振13.5MHz晶振CMX309FBC11.0592MTR晶振11.0592MHz晶振CMX309HBC32.768M-UT晶振32.768MHz晶振CMX309FLC29.498928M-UT晶振29.498928MHz石英晶振 CMX309FLC13.500MT晶振13.5MHz晶振CMX309FBC11.2896MTR晶振11.2896MHz晶振CMX309HBC32.768M-UT晶振32.768MHz晶振CMX309FLC30.000M-UT晶振30MHz石英晶振 CMX309FLC14.31818MT晶振14.31818MHz晶振CMX309FBC11.2896MTR晶振11.2896MHz晶振CMX309HBC33.000M-UT晶振33MHz晶振CMX309FLC30.000M-UT晶振30MHz石英晶振 CMX309FLC14.31818MT晶振14.31818MHz晶振CMX309FBC12.000MTR晶振12MHz晶振CMX309HBC33.000M-UT晶振33MHz晶振CMX309HWC32.000M-UT晶振32MHz石英晶振 CMX309FLC14.7456MT晶振14.7456MHz晶振CMX309FBC12.000MTR晶振12MHz晶振CMX309HBC33.3333M-UT晶振33.3333MHz晶振CMX309HWC32.000M-UT晶振32MHz石英晶振
CMX309晶振产品尺寸图
CMX309FLC14.7456MT晶振14.7456MHz晶振CMX309FBC12.288MTR晶振12.288MHz晶振CMX309HBC33.3333M-UT晶振33.3333MHz晶振CMX309HWC32.768M-UT晶振32.768MHz石英晶振 CMX309FLC15.360MT晶振15.36MHz晶振CMX309FBC12.288MTR晶振12.288MHz晶振CMX309HBC36.864M-UT晶振36.864MHz晶振CMX309HWC32.768M-UT晶振32.768MHz石英晶振 CMX309FLC15.360MT晶振15.36MHz晶振CMX309FBC14.31818MTR晶振14.31818MHz晶振CMX309HBC36.864M-UT晶振36.864MHz晶振CMX309HWC33.000M-UT晶振33MHz石英晶振 CMX309FLC16.000MT晶振16MHz晶振CMX309FBC14.31818MTR晶振14.31818MHz晶振CMX309HBC40.000M-UT晶振40MHz晶振CMX309HWC33.000M-UT晶振33MHz石英晶振 CMX309FLC16.000MT晶振16MHz晶振CMX309FBC14.7456MTR晶振14.7456MHz晶振CMX309HBC40.000M-UT晶振40MHz晶振CMX309HWC33.8688M-UT晶振33.8688MHz石英晶振 CMX309FLC16.384MT晶振16.384MHz晶振CMX309FBC14.7456MTR晶振14.7456MHz晶振CMX309HBC48.000M-UT晶振48MHz晶振CMX309HWC33.8688M-UT晶振33.8688MHz石英晶振 CMX309FLC16.384MT晶振16.384MHz晶振CMX309FBC16.000MTR晶振16MHz晶振CMX309HBC48.000M-UT晶振48MHz晶振CMX309HWC40.000M-UT晶振40MHz石英晶振 CMX309FLC16.6666MT晶振16.6666MHz晶振CMX309FBC16.000MTR晶振16MHz晶振CMX309HBC50.000M-UT晶振50MHz晶振CMX309HWC40.000M-UT晶振40MHz石英晶振 CMX309FLC16.6666MT晶振16.6666MHz晶振CMX309FBC16.384MTR晶振16.384MHz晶振CMX309HBC50.000M-UT晶振50MHz晶振CMX309HWC48.000M-UT晶振48MHz石英晶振 CMX309FLC17.734475MT晶振17.734475MHz晶振CMX309FBC16.384MTR晶振16.384MHz晶振CMX309HBC53.125M-UT晶振53.125MHz晶振CMX309HWC48.000M-UT晶振48MHz石英晶振 CMX309FLC17.734475MT晶振17.734475MHz晶振CMX309FBC18.432MTR晶振18.432MHz晶振CMX309HBC53.125M-UT晶振53.125MHz晶振CMX309HWC49.152M-UT晶振49.152MHz石英晶振 CMX309FLC18.000MT晶振18MHz晶振CMX309FBC18.432MTR晶振18.432MHz晶振CMX309FLC1.544M-UT晶振1.544MHz晶振CMX309HWC49.152M-UT晶振49.152MHz石英晶振 CMX309FLC18.000MT晶振18MHz晶振CMX309FBC20.000MTR晶振20MHz晶振CMX309FLC1.544M-UT晶振1.544MHz晶振CMX309HWC50.000M-UT晶振50MHz石英晶振 CMX309FLC18.432MT晶振18.432MHz晶振CMX309FBC20.000MTR晶振20MHz晶振CMX309FLC1.8432M-UT晶振1.8432MHz晶振CMX309HWC50.000M-UT晶振50MHz石英晶振 CMX309FLC18.432MT晶振18.432MHz晶振CMX309FBC24.000MTR晶振24MHz晶振CMX309FLC1.8432M-UT晶振1.8432MHz晶振CMX309HWC53.125M-UT晶振53.125MHz石英晶振 CMX309FLC19.6608MT晶振19.6608MHz晶振CMX309FBC24.000MTR晶振24MHz晶振CMX309FLC2.000M-UT晶振2MHz晶振CMX309HWC53.125M-UT晶振53.125MHz石英晶振 CMX309FLC19.6608MT晶振19.6608MHz晶振CMX309FBC24.576MTR晶振24.576MHz晶振CMX309FLC2.000M-UT晶振2MHz晶振CMX309FLC27.000MB晶振27MHz石英晶振 CMX309FLC19.6608MT晶振19.6608MHz晶振CMX309FBC24.576MTR晶振24.576MHz晶振CMX309FLC2.048M-UT晶振2.048MHz晶振CMX309FLC6.000MB晶振6MHz石英晶振 CMX309FLC20.000MT晶振20MHz晶振CMX309FBC25.000MTR晶振25MHz晶振CMX309FLC2.048M-UT晶振2.048MHz晶振CMX309FBB19.6608MTR晶振19.6608MHz石英晶振 CMX309FLC20.000MT晶振20MHz晶振CMX309FBC25.000MTR晶振25MHz晶振CMX309FLC2.4576M-UT晶振2.4576MHz晶振CMX309FBB19.6608MTR晶振19.6608MHz石英晶振 CMX309FLC22.1184MT晶振22.1184MHz晶振CMX309FBC27.000MTR晶振27MHz晶振CMX309FLC2.4576M-UT晶振2.4576MHz晶振CMX309FBC30.000MTR晶振30MHz石英晶振 CMX309FLC22.1184MT晶振22.1184MHz晶振
CMX309晶振产品参数表
CMX309FBC27.000MTR晶振27MHz晶振CMX309FLC3.072M-UT晶振3.072MHz晶振CMX309FBC30.000MTR晶振30MHz石英晶振 CMX309FLC24.000MT晶振24MHz晶振CMX309HBC32.000MTR晶振32MHz晶振CMX309FLC3.072M-UT晶振3.072MHz晶振CMX309FLC10.240MTR晶振10.24MHz石英晶振 CMX309FLC24.000MT晶振24MHz晶振CMX309HBC32.000MTR晶振32MHz晶振CMX309FLC3.579545M-UT晶振3.579545MHz晶振CMX309FLC10.240MTR晶振10.24MHz石英晶振 CMX309FLC24.576MT晶振24.576MHz晶振CMX309HBC32.768MTR晶振32.768MHz晶振CMX309FLC3.579545M-UT晶振3.579545MHz晶振CMX309FLC16.257MTR晶振16.257MHz石英晶振 CMX309FLC24.576MT晶振24.576MHz晶振CMX309HBC32.768MTR晶振32.768MHz晶振CMX309FLC3.6864M-UT晶振3.6864MHz晶振CMX309FLC16.257MTR晶振16.257MHz石英晶振 CMX309FLC25.000MT晶振25MHz晶振CMX309HBC33.000MTR晶振33MHz晶振CMX309FLC3.6864M-UT晶振3.6864MHz晶振CMX309HBC3.6864MTR晶振3.6864MHz石英晶振 CMX309FLC25.000MT晶振25MHz晶振CMX309HBC33.000MTR晶振33MHz晶振CMX309FLC4.000M-UT晶振4MHz晶振CMX309HBC3.6864MTR晶振3.6864MHz石英晶振 CMX309FLC25.175MT晶振25.175MHz晶振CMX309HBC33.3333MTR晶振33.3333MHz晶振CMX309FLC4.000M-UT晶振4MHz晶振CMX309FBC22.1184M-UT晶振22.1184MHz石英晶振 CMX309FLC25.175MT晶振25.175MHz晶振CMX309HBC33.3333MTR晶振33.3333MHz晶振CMX309FLC4.096M-UT晶振4.096MHz晶振CMX309FBC28.322MTR晶振28.322MHz石英晶振 CMX309FLC27.000MT晶振27MHz晶振CMX309HBC36.864MTR晶振36.864MHz晶振CMX309FLC4.096M-UT晶振4.096MHz晶振CMX309FBC4.9152MTR晶振4.9152MHz石英晶振 CMX309FLC27.000MT晶振27MHz晶振CMX309HBC36.864MTR晶振36.864MHz晶振CMX309FLC4.9152M-UT晶振4.9152MHz晶振CMX309HBC33.333300MTR晶振33.3333MHz石英晶振 CMX309FLC28.322MT晶振28.322MHz晶振CMX309HBC40.000MTR晶振40MHz晶振CMX309FLC4.9152M-UT晶振4.9152MHz晶振CMX309HWC36.864MTR晶振36.864MHz石英晶振 CMX309FLC28.322MT晶振28.322MHz晶振CMX309HBC40.000MTR晶振40MHz晶振CMX309FLC5.000M-UT晶振5MHz晶振CMX309FLC7.3728M-UT晶振7.3728MHz石英晶振 CMX309FLC28.63636MT晶振28.63636MHz晶振CMX309HBC48.000MTR晶振48MHz晶振CMX309FLC5.000M-UT晶振5MHz晶振CMX309FLC8.000M-UT晶振8MHz石英晶振 CMX309FLC28.63636MT晶振28.63636MHz晶振CMX309HBC48.000MTR晶振48MHz晶振CMX309FLC6.000M-UT晶振6MHz晶振CMX309FLC8.000M-UT晶振8MHz石英晶振 CMX309FLC29.498928MT晶振29.498928MHz晶振CMX309HBC50.000MTR晶振50MHz晶振CMX309FLC6.000M-UT晶振6MHz晶振CMX309FLC8.192M-UT晶振8.192MHz石英晶振 CMX309FLC29.498928MT晶振29.498928MHz晶振CMX309HBC50.000MTR晶振50MHz晶振CMX309FLC6.144M-UT晶振6.144MHz晶振CMX309FLC8.192M-UT晶振8.192MHz石英晶振 CMX309FLC30.000MT晶振30MHz晶振CMX309HBC53.125MTR晶振53.125MHz晶振CMX309FLC6.144M-UT晶振6.144MHz晶振CMX309FLC9.8304M-UT晶振9.8304MHz石英晶振 CMX309FLC30.000MT晶振30MHz晶振CMX309HBC53.125MTR晶振53.125MHz晶振CMX309FLC7.3728M-UT晶振7.3728MHz晶振CMX309FBC1.8432M-UT晶振1.8432MHz石英晶振 CMX309HWC32.000MT晶振32MHz晶振CMX309FBC1.000M-UT晶振1MHz晶振CMX309FBC1.544M-UT晶振1.544MHz晶振CMX309FBC1.8432M-UT晶振1.8432MHz石英晶振 CMX309HWC32.000MT晶振32MHz晶振CMX309FBC1.000M-UT晶振1MHz晶振CMX309HWC32.768MT晶振32.768MHz晶振CMX309FBC1.544M-UT晶振1.544MHz石英晶振 晶振晶振晶振晶振晶振晶振CMX309HWC32.768MT晶振32.768MHz石英晶振
- 阅读(286)
相关搜索
热点聚焦
- 1时钟振荡器XO57CTECNA12M电信设备专用晶振
- 2汽车音响控制器专用晶振403C35D28M63636
- 3XCO时钟振荡器C04310-32.000-EXT-T-TR支持微控制器应用
- 4ABS07W-32.768KHZ-J-2-T音叉晶体可实现最佳的电路内性能
- 5402F24011CAR非常适合支持各种商业和工业应用
- 6无线模块专用微型ECS-240-8-36-TR晶体
- 7DSX321G晶体谐振器1N226000AA0G汽车电子控制板专用晶振
- 8lora模块低功耗温补晶振ECS-327TXO-33-TR
- 9ECS-250-12-33QZ-ADS-TR适合高冲击和高振动环境的理想选择
- 10ECS-200-20-20BM-TR紧凑型SMD晶体是物联网应用的理想选择